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Abstract

Markov switching models are widely used in economics, finance, and related fields to capture
nonlinearities arising from regime shifts. Most existing studies on testing the number of regimes
focus on the null hypothesis of a single regime (i.e., a linear model) versus two regimes. Even
in such simple cases, this type of problem raises issues of nonstandard asymptotic distributions,
identification failure, and nuisance parameters. This paper proposes Monte Carlo likelihood ratio
tests for Markov switching models that address these challenges and extend to more general
settings, allowing one to test a null hypothesis with M0 regimes against an alternative with
M0 + m regimes, for any M0 ≥ 1 and m ≥ 1. By applying Monte Carlo methods to the
likelihood ratio statistic, we develop tests that remain valid in finite samples and are applicable
to non-stationary processes, non-Gaussian errors, and multivariate models–scenarios that have
received limited attention in the literature. A key contribution is the Maximized Monte Carlo
Likelihood Ratio Test (MMC-LRT), an identification-robust procedure with both finite-sample
and asymptotic validity. Importantly, the proposed tests are also applicable to testing for the
synchronization of Markov processes and to Markov switching GARCH models. Simulation
results demonstrate that the proposed tests effectively control the size and exhibit strong power
across a range of empirically relevant scenarios. In an empirical application to U.S. GNP and
GDP growth, we find support for a three-regime model that confirms the Great Moderation
and indicates a return to the low-volatility regime following both the Great Recession and the
COVID-19 recession. In a second application, we use Markov switching VAR models to test for
international business cycle synchronization. The results suggest that the inclusion of COVID-
era data weakens the previously observed synchronization between the U.S. and Canada.
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1 Introduction

Markov regime-switching models were first introduced by Goldfeld and Quandt (1973) and later

popularized by Hamilton (1989). These models have since become widely used in economics and

finance due to their ability to capture non-linear dynamics arising from discrete shifts in the un-

derlying data-generating process. In such models, different regimes can represent distinct phases of

the economy–for instance, in the case of U.S. GNP growth, one regime might correspond to positive

growth during expansions and another to negative growth during recessions.

Due to this flexibility, Markov switching models have been applied extensively in macroeco-

nomics and finance. Applications include business cycle identification (Chauvet, 1998; Chauvet

and Hamilton, 2006; Chauvet et al., 2002; Diebold and Rudebusch, 1996; Hamilton, 1989; Kim

and Nelson, 1999; Qin and Qu, 2021), interest rate modeling (Garcia and Perron, 1996), financial

markets (Marcucci, 2005), volatility modeling (Augustyniak, 2014; Gray, 1996; Haas et al., 2004;

Hamilton and Susmel, 1994; Klaassen, 2002), time-varying correlations (Pelletier, 2006), and state-

dependent impulse response functions (Sims and Zha, 2006; Caggiano et al., 2017). They have also

been used in identifying structural VAR models (Herwartz and Lütkepohl, 2014; Lanne et al., 2010;

Lütkepohl et al., 2021), and more recently for modeling core inflation Rodriguez-Rondon (2024);

Ahn and Luciani (2024); Le Bihan et al. (2024). For comprehensive reviews, see Hamilton (2010),

Hamilton (2016), and Ang and Timmermann (2012).

Beyond macro and finance, Markov switching models have found applications in climate eco-

nomics (Golosov et al., 2014; Dietz and Stern, 2015), environmental and energy studies (Cevik et al.,

2021; Charfeddine, 2017), industrial organization (Aguirregabiria and Mira, 2007; Sweeting, 2013),

health economics (Hernández and Ochoa, 2016; Anser et al., 2021), and other machine learning

applications.

A fundamental challenge in using Markov switching models is determining the number of

regimes, which is typically assumed a priori. Since the true number of regimes is unknown in

practice, it is of interest to test a model with M0 regimes against an alternative with M0 + m

regimes. However, standard hypothesis testing procedures are not readily applicable in this con-

text because key parameters are unidentified under the null, and the usual regularity conditions

needed for standard asymptotic results are violated.

The literature on the asymptotic distribution of likelihood ratio (LR) tests for Markov switching

models is rich (Carter and Steigerwald, 2012; Cho and White, 2007; Garcia, 1998; Hansen, 1992;
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Kasahara and Shimotsu, 2018; Qu and Zhuo, 2021), with a particularly important contribution–

for our LR setting–being the SupLR(Λϵ) test of Qu and Zhuo (2021) and early study of Garcia

(1998). However, most of these contributions, including the asymptotic LR tests, are limited to

testing a linear null (M0 = 1) against a two-regime alternative (m = 1). An exception is Kasahara

and Shimotsu (2018), who establish asymptotic validity for a parametric bootstrap LR test when

comparing M0 and M0 + 1 regime models for M0 ≥ 1, but only under strong and restrictive

assumptions. Similarly, Qu and Zhuo (2021) derive validity results for broader classes of models,

yet still within the setting of M0 = m = 1, and again under restrictive conditions.

Meanwhile, other researchers have proposed alternative test procedures based on moments

of least-squares residuals (Dufour and Luger, 2017), parameter stability (Carrasco et al., 2014),

other moment-matching conditions (Antoine et al., 2022), and score-type tests (Amengual et al.,

2025b,a). The parameter stability test of Carrasco et al. (2014) is powerful but primarily designed

for testing linear models (M0 = 1) against two-regime alternatives (m = 1). It is not suited for

general tests where both M0 ≥ 1 and m > 1. Moreover, most of the tests discussed thus far

are only valid asymptotically and require restrictive assumptions, such as stationarity, Gaussian

errors, and constrained parameter spaces, and importantly, only consider the univariate setting. In

contrast, Dufour and Luger (2017) adopt the finite-sample Monte Carlo (MC) testing framework of

Dufour (2006) to develop moment-based tests that are valid without relying on asymptotic theory.

Although their approach also focuses on the M0 = m = 1 case, it demonstrates that finite-sample

valid inference is possible without heavy distributional assumptions.

This paper builds on the MC framework of Dufour (2006) and develops two likelihood-based

tests for Markov switching models: the Local Monte Carlo Likelihood Ratio Test (LMC-LRT)

and the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT). These procedures allow for

testing hypotheses of the form H0 : M0 vs. H1 : M0 + m, where both M0 ≥ 1 and m ≥ 1,

and are applicable to both univariate and multivariate models–including Hidden Markov Models,

Markov-switching VARs, and MS-GARCH models–areas largely ignored in prior literature. The

MMC-LRT is an exact test valid in both finite samples and asymptotically, and it is robust to the

identification problems that typically arise in regime-switching models. Both the LMC-LRT and

MMC-LRT avoid the need for stationarity assumptions, Gaussianity, and constrained parameter

spaces. Specifically, these tests do not rely on the existence of an asymptotic distribution and,

as a result, can be applied in settings where previous test procedures, including the parametric

bootstrap procedure, are not asymptotically valid or settings where the asymptotic validity simply
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hasn’t yet been established in the literature.

Notably, hypothesis testing in settings with m > 1, multivariate models, non-Gaussian errors,

or non-stationary processes has received little attention in the literature, making this study a novel

contribution. Simulation results confirm that the proposed LMC-LRT and MMC-LRT procedures

maintain accurate size control and exhibit strong power across a wide range of empirically relevant

scenarios–including those with multiple regimes, boundary parameters (e.g., absorbing regimes),

and non-stationarity. In univariate settings, both tests outperform existing moment-based and

asymptotic procedures, particularly when structural shifts occur in the mean or in both the mean

and variance. The MMC-LRT delivers robust inference even in small samples, while the LMC-

LRT remains computationally efficient and performs well even when a well-defined likelihood is

unavailable.

While our simulations and empirical applications focus on changes in the conditional mean or

variance of the outcome variable, the proposed testing procedures are equally applicable to more

complex univariate settings, including Markov switching GARCH (MS-GARCH) models. These

models feature regime-dependent volatility dynamics and are widely used in financial econometrics

to capture shifts in conditional heteroskedasticity. Extending the testing framework to MS-GARCH

models is straightforward so long as the likelihood function is available under both the null and

alternative, thereby enabling formal inference on the number of volatility regimes. This builds on

earlier work by Gray (1996), Haas et al. (2004), and Augustyniak (2014), and further broadens the

scope of finite-sample valid testing in regime-switching contexts.

Our methodology also enables testing whether different model components are governed by

the same or distinct regime-switching processes. In univariate models, for example, one can test

whether the mean and variance follow a common Markov chain. In multivariate settings, such

as VAR models, the framework allows testing whether individual equations share a synchronized

regime structure. This is conceptually related to testing for common structural breaks in the

structural change literature (Oka and Perron, 2018; Perron et al., 2020), but has not been feasible

in the Markov switching context due to the technical challenges involved in testing models with

multiple regimes. The framework developed here makes such testing feasible, and we illustrate this

in an empirical application on international business cycle synchronization.

In the multivariate simulation evidence, the proposed tests prove valuable in detecting regime

synchronization or independence. Their power depends on both the degree of misalignment between

regimes and the sample size. While short-lived regime shifts may obscure partial independence in
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small samples, full independence can still be detected reliably under moderate conditions. These

findings underscore the practical advantages of simulation-based testing methods that remain valid

in finite samples, especially when analyzing complex regime dynamics.

Finally, we extend the moment-based test of Dufour and Luger (2017) to non-stationary pro-

cesses and provide new insights into its performance under such conditions. All test procedures

are implemented in the MSTest R package, detailed in the companion paper Rodriguez-Rondon

and Dufour (2024). Although the focus of this study is on Markov switching models, the proposed

tests are also applicable in Hidden Markov Model settings.

The remainder of the paper is organized as follows. Section 2 reviews the notation, the Markov

switching model framework, and estimation strategies. Section 3 introduces the proposed testing

procedures and required assumptions. Section 4 presents simulation results, comparing the pro-

posed tests to existing ones in univariate settings and showcasing results for multivariate cases.

Section 5 provides two empirical applications: one on U.S. GDP and GNP growth, and another

using MS-VAR models to test for business cycle synchronization across countries. Finally, Section 6

concludes.

2 Markov-switching Model

AMarkov switching model is described as follows. Let (yt, wt) be a sequence of random vectors. The

vector wt is a finite-dimensional vector, and in this work, we allow yt to be either a scalar (univariate

setting) or a finite-dimensional vector (multivariate setting). Further, let St = {1, . . . ,M} be a

latent variable that determines the regimes at time t and let st denote the (observed) realization of

St. We define the information set Yt−1 = σ-field{. . . , wt−1, yt−2, wt, yt−1}. The Markov switching

model can be expressed as

yt = xtβ + ztδst + σstϵt (1)

where, in a univariate setting, yt is a scalar, xt is a (1× qx) vector of variables whose coefficients do

not depend on the latent Markov process St, zt is a (1×qz) vector of variables whose coefficients do

depend on the Markov process St, and ϵt is the error process. The number of regressors, qx, that

remain constant, and the number of regressors that change with St, qz, must sum to q = (qy×p)+qw,

where qy = 1 in the univariate setting or larger than 1 in the multivariate setting, p is the number

of lags in the model, and qw is the number of exogenous regressors. As can be seen from (1), the
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variance can also change according to the Markov process St. We can group all parameters in

θst = (β, δst , σst , vec(P)), where vec(·) is the vectorization operator that transforms a matrix to a

vector, and P is the transition matrix, which we describe in more detail below. When considering

the multivariate setting, we then have a covariance matrix Σst and make use of the vech(·) operator,

which takes the values under and on the main diagonal of the matrix since, given the symmetry,

these are the only parameters needed to summarize the covariance structure. In this case, β and

δst are matrices and so we must use vec(β) and vec(δst) in θst .

We can assume, for example, that the error process is distributed as a N (0, Iqy). It is important

to note, however, that for the testing procedure we propose below, the assumption of normality

is not required, and other distributions can be considered instead by simply using the appropriate

likelihood density function. Alternatively, even if the error process is not normally distributed, we

can continue to use the normal density function. In this case, the test presented below becomes

better described as a pseudo-Monte Carlo Likelihood Ratio Test for Markov switching models.

However, as will be described in the next section, the test is still valid in this case and in other

cases where the likelihood function may not be well-defined. For this reason, and for simplicity, we

continue to present the model using this normality assumption in what follows.

A Markov switching model is typically described as having lags of yt as explanatory variables.

That is, lags must be included in either xt or zt depending on whether we want the autoregressive

coefficients to change across regimes. This setting is very general and even allows one to consider a

trend function within xt or zt. On the other hand, an alternative but related model is the Hidden

Markov Model. Like Markov switching models, Hidden Markov models are used to describe a

process yt which depends on a latent Markov process St, but as discussed in An et al. (2013), these

models are used in the case where the process yt does not depend on its own lags. However, the

dependence on past observations allows for more general interactions between yt and St, which

can be used to model more complicated causal links between economic or financial variables of

interest. As a result, Markov switching models are more commonly used the econometric literature

and further, Hidden Markov models can be understood as a simplified version of Markov switching

models. For this reason, we focus on the more general Markov switching case. Nonetheless, the

results presented here still apply to Hidden Markov models, which, as previously discussed, have

a wide range of interesting applications including: computational molecular biology (Baldi et al.,

1994; Krogh et al., 1994), handwriting and speech recognition (Jelinek, 1997; Nag et al., 1986;

Rabiner and Juang, 1986, 1993), computer vision and pattern recognition (Bunke and Caelli, 2001),
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and other machine learning applications.

As described in Hamilton (1994), for a model with M regimes, the one-step transition proba-

bilities can be gathered into a transition matrix such as

P =


p11 . . . pM1

...
. . .

...

p1M . . . pMM


where, for example, pij = Pr(St = j | St−1 = i) is the probability of state i being followed by state

j. The columns of the transition matrix must sum to one to have a well-defined transition matrix

(i.e.,
∑M

j=1 pij = 1, ∀i). We can also obtain the ergodic probabilities, π = (π1, . . . , πM )′, which are

given by

πππ = (A′A)−1A′eN+1 & A =

IM −P

111′


where eM+1 is the (M + 1)th column of IM+1. These ergodic probabilities can be understood as

representing, in the long-run on average, the proportion of time spent in each regime.

Let f(yt|Yt−1; θ) denote the conditional density of yt given Yt−1, and assume it satisfies

yt|(Yt−1, st) ∼


f(yt|Yt−1; θ

1), if st = 1

...

f(yt|Yt−1; θ
M ), if st = M

(2)

for t = 1, . . . , T . The sample log likelihood conditional on the first p observations of yt is given by

LT (θ) = logf(yT1 |y0−p+1; θ) =

T∑
t=1

logf(yt|Yt−1; θ) (3)

where θ = (β, δ1, . . . , δM , σ1, . . . , σM , vec(P)), and where the vec(·) operator should also be applied

to β, δst , and Σst if working with a multivariate model. Here,

f(yt|Yt−1; θ) =
M∑

st=1

M∑
st−1=1

· · ·
M∑

st−p=1

f(yt, St = st, St−1 = st−1, . . . , St−p = st−p|Yt−1; θ) (4)
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and more specifically

f(yt, St = st, . . . , St−p = st−p|Yt−1; θ) =
Pr(S∗

t = s∗t |Yt−1; θ)√
2πσ2

s∗t

× exp

{
−[yt − xtβ − ztδs∗t ]

2

2σ2
s∗t

}
(5)

where we set

S∗
t = s∗t if St = st, St−1 = st−1, . . . , St−p = st−p

and Pr(S∗
t = s∗t |Yt−1; θ) is the probability that this occurs.

Typically, Markov switching and Hidden Markov models are estimated using the Expectation

Maximization (EM) algorithm (Dempster et al., 1977), Bayesian methods, or through the use of

the Kalman filter if using the state-space representation of the model. In very simple cases, Markov

switching models can also be estimated using Maximum Likelihood Estimation (MLE). However,

since the Markov process St is unobservable, and more importantly, the likelihood function can have

several modes of equal height, along with other unusual features that can complicate estimation by

MLE, this approach is not often used, except for simple cases where M is small (e.g., M = 2). In

this study, when necessary, we use the EM algorithm for estimating Markov switching models. It is

worth noting that, in practice, empirical estimates can sometimes be improved by using the results

of the EM algorithm as initial values in a Newton-type optimization algorithm. This two-step

estimation procedure is used to obtain the results presented in the empirical section of this paper.

We omit a detailed explanation of the EM algorithm, as our focus is on the hypothesis testing

procedures proposed next. For the interested reader, the estimation of a Markov switching model

via the EM algorithm is described in detail in Hamilton (1990) and Hamilton (1994), as well as in

Krolzig (1997) for the Markov-switching VAR model.

3 Monte Carlo likelihood ratio tests

In this section, we introduce the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT) and

the Local Monte Carlo Likelihood Ratio Test (LMC-LRT) for Markov switching models, which

we propose in this paper. Similar to Garcia (1998) and the parametric bootstrap procedures

described in Qu and Zhuo (2021) and Kasahara and Shimotsu (2018), when parameters are not

identified under the null hypothesis, we assume that the null distribution depends only on the

remaining parameters. The LRT approach requires us to estimate the model under both the null
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and alternative hypotheses in order to obtain the log-likelihoods for each model. The log-likelihood

for models with M > 1 regimes is given by equations (3) - (5):

LT (θi) = logf(yT1 |y0−p+1; θ) =
T∑
t=1

logf(yt|Yt−1; θ)

where

θi = (β, δ1, . . . , δM , σ1, . . . , σM , vec(P))′ ∈ Ω̄i . (6)

The subscript of i underscores the fact that θi represents the parameter vector under the null

hypothesis when i = 0, or under the alternative hypothesis when i = 1. Note that in a multivariate

setting, we simply treat β, δst , and Σst as matrices, and apply the vec(·) operator to vectorize

them, as discussed in the previous section. The set Ω̄i satisfies any theoretical restrictions we wish

to impose on θi (e.g., σi > 0). For example, as noted by Qu and Zhuo (2021) and Kasahara and

Shimotsu (2018), for the asymptotic validity of the parametric bootstrap and the SupLR(Λϵ), we

would need to impose that pi,j ∈ (ϵ, 1 − ϵ) on Ω̄i. However, in our setting, this restriction is not

necessary. When we consider the null hypothesis with M = 1, the log-likelihood is given by

L0
T (θ0) = log f(yT1 | y0−p+1; θ0) =

T∑
t=1

log f(yt |Yt−1; θ0) (7)

where

f(yt |Yt−1; θ0) =
1√
2πσ2

exp

{
−[yt − xtβ]

2

2σ2

}
, (8)

θ0 = (β, σ)′ ∈ Ω̄0. (9)

Here, δst and vec(P) are excluded because there are no parameters that change under the null

hypothesis of no Markov regime-switching. Also, note that in general Ω̄0 has a lower dimension

than Ω̄1.

For simplicity of exposition, consider first the straightforward and common scenario where

we want to compare a null hypothesis of M0 = 1 regime (i.e., no Markov switching) against an

alternative hypothesis of a Markov switching model with M0 + m = 2 regimes. In this case, the

null and alternative hypotheses can be expressed as:

H0 : δ1 = δ2 = δ for some unknown δ , (10)
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H1 : (δ1, δ2) = (δ∗1 , δ
∗
2) for some unknown δ∗1 ̸= δ∗2 , (11)

where δi includes any parameter we consider to be governed by the Markov process St. In general,

when M0 ≥ 1 and m ≥ 1, we need to consider different combinations of restrictions under the

null hypothesis. For example, when considering H0 : M0 = 2 against H1 : M0 +m = 3, we must

account for the following cases: i. δ1 = δ2 and δ1 ̸= δ3, ii. δ1 = δ3 and δ1 ̸= δ2, or iii. δ2 = δ3

and δ2 ̸= δ1. Using the likelihood ratio test statistic allows us to consider these combinations

directly by comparing the likelihoods of the null and alternative hypotheses. For this reason, and

for convenience, we continue with the notion of comparing H0 : M0 against H1 : M0 + m, where

both M0 and m ≥ 1.

Clearly, H0 is a restricted version of H1 for each θ0 ∈ Ω̄0, we can find θ1 such that

L0
T (θ0) = LT (θ1) , θ1 ∈ Ω0, (12)

where Ω0 is the subset of vectors θ1 ∈ Ω̄1 such that θ1 satisfies H0. Under H0, the vector θ0 ∈ Ω̄0

consists of nuisance parameters: the null distribution of any test statistic forH0 depends on θ0 ∈ Ω̄0.

In this context, the null distribution of the test statistic is, in fact, completely determined by θ0.

The likelihood ratio statistic for testing H0 against H1 can then be expressed as

LRT = 2[L̄T (H1)− L̄T (H0)] (13)

where

L̄T (H1) = sup{LT (θ1) : θ1 ∈ Ω̄1} , (14)

L̄T (H0) = sup{L0
T (θ0) : θ0 ∈ Ω̄0} = sup{LT (θ1) : θ1 ∈ Ω0} . (15)

The null distribution of LRT depends on the parameter θ0 ∈ Ω̄0. Now, let LR
(0)
T denote a real

random variable, computed from observed data when the true parameter vector is θ0. Since the

model in (1) is parametric, we can use it to generate a vector of N i.i.d. replications of LRT for

any given value of θ0 ∈ Ω̄0:

LR(N, θ0) := [LR
(1)
T (θ0), . . . , LR

(N)
T (θ0)]

′, θ0 ∈ Ω̄0 . (16)

That is, we make the following assumption:
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Assumption 3.1 Exchangeability of Likelihood Ratio Statistics Under the Null.

LR
(0)
T is a real random variable and LR(N, θ0) a real random vector, all defined on a common

probability space (F ,Yt−1, Pθ0) such that the random variables LR
(0)
T , LR

(1)
T (θ0), . . . , LR

(N)
T (θ0)

are exchangeable for some θ0 ∈ Ω̄0, each with distribution function F [x | θ0].

Alternatively, since these models are often used in a time series framework, especially in macroe-

conomic and financial applications, it is often more convenient to work with the following assump-

tion:

Assumption 3.2 Independence and Identical Distribution of Simulated Statistics Under the Null.

LR
(0)
T is a real random variable and LR(N, θ0) a real random vector, all defined on a common

probability space (F ,Yt−1, Pθ0) such that the simulated statistics LR
(1)
T (θ0), . . . , LR

(N)
T (θ0) are in-

dependent and identically distributed (i.i.d.) with common distribution function F [x | θ0], and are

independent of LR
(0)
T .

This assumption is stronger than exchangeability but is particularly appealing in time series mod-

els. While exchangeability requires that the joint distribution of the test statistics is invariant to

permutations (allowing for potential dependence), the i.i.d. assumption explicitly rules out de-

pendence between the simulated statistics. In Monte Carlo test procedures, i.i.d. simulations are

typically obtained by generating independent sample paths of the data-generating process under

the null. This is often easier to implement and verify in time series applications where one can sim-

ulate directly from the model for a fixed θ0. Moreover, the i.i.d. structure simplifies the theoretical

justification of the test and the computation of p-values.

Note that generatingN i.i.d. replications of LRT using (1) requires knowledge of the distribution

of ϵt. The procedure proposed here is quite general, allowing us to consider any distribution for ϵt,

including non-Gaussian distributions. In the case of non-Gaussian distributions, we simply need to

use the appropriate likelihood function in (3) - (5) or (7) - (8). However, even when the distribution

of ϵt is non-Gaussian or unknown, we can continue to work with the Gaussian density function. In

such cases, we refer to this approach as Monte Carlo pseudo-likelihood ratio tests. Next, we define

F̂N [x | θ0] := F̂N [x; LR(N, θ0)] =
1

N

N∑
i=1

I[LR
(i)
T (θ0) ≤ x] (17)

ĜN [x | θ0] := ĜN [x; LR(N, θ0)] = 1− F̂N [x; LR(N, θ0)] (18)
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where I(C) := 1 if condition C holds, and I(C) = 0 otherwise. F̂N [x | θ0] is the sample distribution

of the simulated statistics, and ĜN [x | θ0] is the corresponding survival function. Then, the Monte

Carlo p-value is given by

p̂N [x | θ0] =
NĜN [x | θ0] + 1

N + 1
. (19)

Alternatively, using the relationship

RLR[LR
(0)
T ; N ] = NF̂N [x; LR(N, θ0)]

=

N∑
i=1

I[LR
(0)
T ≥ LRi

T (θ0)] (20)

we can define a Monte Carlo p-value as

p̂N [x | θ0] =
N + 1−RLR[LR

(0)
T ; N ]

N + 1
(21)

where, as can be seen from (20), RLR[LR
(0)
T ;N ] simply computes the rank of the test statistic using

the observed data within the generated series LR(N, θ0). We also make the following assumption,

Assumption 3.3 Measurability of Extremal Simulated Distributions under the Null.

Let sup{ĜN [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} and inf{F̂N [LR

(0)
T |θ0] : θ0 ∈ Ω̄0} be Yt−1-measurable and where

Ω̄0 is a nonempty subset of Ω.

Now, we can make the following proposition

Proposition 3.1 Validity of MMC-LRT for Markov switching models.

Let LR
(0)
T (θ0) = LR

(0)
T , α(N + 1) be and integer, and suppose

Pr[LR
(i)
T = LR

(j)
T ] = 0 for i ̸= j, i, j = 1, . . . , N. (22)

Using assumptions 3.2 (or 3.1) and 3.3, if θ0 ∈ Ω̄0, then for 0 ≤ α1 ≤ 1,

Pr[sup{ĜN [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} ≤ α1] ≤ Pr[inf{F̂N [LR

(0)
T |θ0] : θ0 ∈ Ω̄0} ≥ 1− α1] (23)

≤ I[α1N ] + 1

N + 1
(24)

where Pr[inf{F̂N [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} ≥ 1 − α1] = Pr[LR

(0)
T ≥ sup{F̂−1

N [1 − α1|θ0] : θ0 ∈ Ω̄0}] for
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0 < α1 < 1 and so

Pr[sup{p̂N [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} ≤ α] ≤ α for 0 ≤ α ≤ 1. (25)

where the last line follows from using (19), setting α1 = α − (1−α)
N , and noting that α = I[α(N+1)]

N+1

whenever α and N are chosen such that α(N+1) is an integer, as assumed. Additionally, here, F̂−1

denotes the quantile function of F̂ . In this context, we refer to this procedure as the Maximized

Monte Carlo Likelihood Ratio Test for Markov switching models, and this proposition establishes

the validity of the test. This follows from Proposition 4.1 in Dufour (2006), so the proof directly

relies on the proof of Proposition 4.1.

This procedure is referred to as the Maximized Monte Carlo likelihood ratio test because (25)

is maximized with respect to θ0 ∈ Ω̄0. However, this parameter space can be very large, specifi-

cally growing with the number of regressors considered and the number of regimes. Additionally,

the solution may not be unique, as the maximum p-value could be obtained by more than one

parameter vector. For this reason, numerical optimization methods that do not rely on derivatives

are recommended to find the maximum Monte Carlo p-value within the nuisance parameter space.

Such algorithms include Generalized Simulated Annealing, Genetic Algorithms, and Particle Swarm

(Dufour, 2006; Dufour and Neves, 2019; Rodriguez-Rondon and Dufour, 2024). As described in

Dufour (2006), to facilitate optimization, it is also possible to search within a smaller consistent

subset of the parameter space, denoted as CT . A consistent set can be defined using the consistent

point estimate. For example, let θ̂0 be the consistent point estimate of θ0. Then, we can define

CT = {θ0 ∈ Ω̄0 : ∥ θ̂0 − θ0 ∥ < c} (26)

where c is a fixed positive constant that does not depend on T and ∥·∥ is the Euclidean norm in

Rk.

Finally, we can also define CT to be the singleton set CT = {θ̂0}, which gives us the Local Monte

Carlo Likelihood Ratio Test (LMC-LRT) for Markov switching models. Here, the consistent set

includes only the consistent point estimate θ̂0. Generic conditions for the asymptotic validity of such

a test are discussed in section 5 of Dufour (2006), but these are more restrictive than those for the

MMC-LRT procedure. To reflect this, we replace F̂N [x | θ0] with F̂TN [x | θ0] = F̂N [x;LRT (N, θ0)]

and ĜN [x | θ0] with ĜTN [x | θ0] = ĜN [x;LRT (N, θ0)] where the subscript T is meant to allow the

test statistics and functions to change based on increasing sample sizes. As a result, the Local
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Monte Carlo p-value is given by

p̂TN [x | θ0] =
NĜTN [x | θ0] + 1

N + 1
(27)

The asymptotic validity in this case refers to the estimate θ̂0 converging asymptotically to the

true parameters in θ0 as the sample size increases. This is not related to the asymptotic validity

of the critical values as desired in Hansen (1992), Garcia (1998), Cho and White (2007), Qu and

Zhuo (2021), and Kasahara and Shimotsu (2018). Specifically, the LMC test can be interpreted

as the finite-sample analogue of the parametric bootstrap. This is because, like the parametric

bootstrap, the LMC procedure is only valid asymptotically as T → ∞ but, unlike the parametric

bootstrap, we do not need a large number of simulations (i.e., N → ∞), since we do not try to

approximate the asymptotic critical values nor assume that the distribution of the test statistic

converges asymptotically. Instead, we work with the critical values from the sample distribution

F̂ [x | θ0].

To be more specific, the MMC-LRT procedure will be valid even when an asymptotic distribu-

tion does not exist and the LMC-LRT procedure will also be valid as T → ∞ if this is the case. This

means the tests proposed here are much more general than the parametric bootstrap procedure

as validity does not require stationarity or working with constrained parameter spaces, which are

needed to obtain its asymptotic validity in the likelihood ratio setting (see Qu and Zhuo (2021) and

Kasahara and Shimotsu (2018) for example). In most cases, these assumptions are needed because

otherwise the likelihood function may not be well-defined. These are cases where our procedure

may again be better described as Monte Carlo pseudo-likelihood ratio test procedures. Further,

we are directly able to deal with cases where m > 1, non-Gaussian settings, and multivariate

settings where the asymptotic validity of the parametric bootstrap procedure has simply not yet

been established in the literature. Finally, this also allows the procedure to be computationally

efficient in the sense that we will not need to perform a large number of simulations with the aim of

obtaining asymptotically valid critical values. In fact, as can be seen from equations (21) and (27),

the number of replications N is taken into account in the calculation of the p-value both in the

numerator and the denominator so that it essentially remains fixed as N increases. As discussed

in Dufour (2006), building a test with level α = 0.05 requires as few as 19 replications, but using

more replications can increase the power of the test. For this reason, in our simulations results

we use N = 99 for our Monte Carlo procedure as in Dufour and Khalaf (2001) and Dufour and
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Luger (2017), though it is also possible to use the procedure described in Davidson and MacKinnon

(2000) to determine the optimal number of simulations to minimize experimental randomness and

loss of power.

At this point we have introduced the MMC-LRT and LMC-LRT for Markov switching models.

We have also described how these tests are more general than the parametric bootstrap procedure

and how they are useful even in settings where yt is a vector (multivariate setting), yt is non-

stationary, and ϵt is non-Gaussian. For hypothesis testing, the generality of our procedure even

extends to settings where m > 1, ensuring finite-sample validity for the MMC-LRT procedure, and

does not require working with a constrained parameter space.

We believe this third feature is especially important because there may be cases where L0
T (θ0) =

LT (θ1) for values θ1 ∈ Ω0 that lie on the boundary. Consider, for example, a scenario where M = 2

and p1,1, p2,1 → 1. In this case, the Markov switching model with M = 2 may be statistically

equivalent to a one-regime (no Markov switching) model. Generally, similar arguments can be

made for cases where M > 2. As a result, we believe allowing parameters, specifically transition

probabilities, to take values on the boundary is an important feature for comparing M0 with M0+m

regimes.

An important extension of this framework is its applicability to Markov switching GARCH

(MS-GARCH) models. In such settings, the conditional variance evolves according to a GARCH

process whose parameters switch across regimes. Estimation can be carried out using standard

methods for MS-GARCH models, and the Monte Carlo test procedures proposed here remain valid

so long as the likelihood function can be evaluated under both the null and alternative. This

allows researchers to formally test the number of regimes in regime-dependent volatility models,

a topic of growing empirical interest, especially in financial econometrics. Applications include

detecting changes in volatility regimes during crises, testing for asymmetric responses to shocks,

and identifying regime shifts in volatility persistence.

Another important aspect to consider is the case where regressors are weakly exogenous. So

far, we have discussed simulating the test statistic by using the parametric model in (1) and i.i.d.

replication of ϵt. In many applications of Markov switching models, where only lags of the observed

data yt are included as explanatory variables, this works perfectly fine. In fact, even in cases where

other regressors are included, as long as they are fixed or strictly exogenous so that we can treat

them as fixed in this context, we can proceed as previously discussed. However, as discussed in Qu

and Zhuo (2021), for the parametric bootstrap procedure, weakly exogenous regressors can lead to
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size distortions. The same can be true for the LMC-LRT procedure proposed here. In such settings,

if the joint distribution of the dependent variable and regressors is unknown, we propose assuming

some functional form (e.g., an AR(p) model), use this relationship to jointly simulate them, and

then proceed as previously discussed.

4 Simulation Evidence

4.1 Univariate simulation results

This section presents simulation evidence on the performance of the Local Monte Carlo Likelihood

Ratio Test (LMC-LRT) and the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT) for

univariate Markov switching models proposed in this chapter. Throughout, we consider data-

generating processes (DGPs) of the form

yt = µst + ϕ1(yt−1 − µst−1) + σstϵt (28)

where ϵt ∼ N (0, 1), and both the mean and variance can switch according to a Markov process

St. Similar DGPs have been considered by Carrasco et al. (2014), Dufour and Luger (2017), and

Qu and Zhuo (2021), among others. We adopt several of the same DGPs as in Dufour and Luger

(2017) to evaluate performance across a wide range of scenarios, including low and high persistence,

symmetric and asymmetric regimes, changes in mean only, variance only, and both simultaneously.

Given the generality of our proposed test procedures, we also consider cases where multiple

regimes exist under the null (e.g., M0 > 1 and m = 1), under the alternative (e.g., M0 = 1

and m > 1), or under both (i.e., M0 > 1 and m > 1). We further examine settings where the

process is non-stationary (i.e., ϕ1 = 1.00) and where transition probabilities lie at the boundary

of the parameter space (e.g., p22 = 1). Simulations are conducted for three sample sizes: T ∈

{100, 200, 500}. We believe these DGPs reflect many empirically relevant settings researchers may

encounter. For instance, smaller sample sizes and asymmetric regimes are especially pertinent in

macroeconomic applications, where quarterly data are used and some regimes are short-lived.

For cases involving a linear model under the null hypothesis (i.e., H0 : M0 = 1) versus a Markov

switching model with two regimes under the alternative (i.e., H1 : M0 +m = 2), we compare the

performance of our proposed tests with those of Dufour and Luger (2017) and Carrasco et al.

(2014).
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The tests proposed by Dufour and Luger (2017) are also based on the Monte Carlo methodol-

ogy described in Dufour (2006), but avoid certain statistical issues associated with likelihood ratio

tests by using the moments of residuals from the restricted model. These moments are designed

to capture features of a normal mixture distribution. The test uses four moments of the residu-

als, producing four Monte Carlo (MC) p-values. To combine these p-values, two approaches are

proposed–one based on the minimum and one on the product of the p-values. See Dufour et al.

(2004) and Dufour et al. (2014) for further discussion on combining test statistics. As a result,

Dufour and Luger (2017) propose four tests: LMCmin, LMCprod, MMCmin, and MMCprod. An

advantage of these methods is that they only require estimating the linear model (without Markov

switching) under the null. However, unlike the LMC-LRT and MMC-LRT, they are limited to

testing a linear null against a two-regime switching alternative.

Carrasco et al. (2014) propose a test that is optimal for detecting inconsistencies in parame-

ter estimates across random coefficient and Markov switching models. Their procedure is broadly

designed to detect parameter heterogeneity, with the Markov switching model as a special case.

Like the moment-based tests in Dufour and Luger (2017), a major benefit is that it only requires

estimation under the null. However, as with Dufour and Luger (2017), it applies only when there

is no regime switching under the null. To address the presence of nuisance parameters, the au-

thors propose two alternatives: a Sup-type test, denoted supTS, following Davies (1987), and an

Exponential-type test, denoted expTS, as in Andrews and Ploberger (1994). Below, when applying

the supTS and expTS tests, we consider values of ρ in the interval [ρ, ρ] = [−0.7, 0.7].

As previously noted, the consistency of the parametric bootstrap procedure when m = 1 has

been shown by Qu and Zhuo (2021) for the case M0 = 1, and by Kasahara and Shimotsu (2018)

for M0 > 1, albeit under more restrictive assumptions than those required by our tests. In par-

ticular, these asymptotic procedures requires constraining the parameter space away from the

boundary when simulating the null distribution. Moreover, their consistency has only been es-

tablished in univariate, stationary, and Gaussian contexts–though Kasahara and Shimotsu (2018)

consider some non-Gaussian cases as well. Kasahara and Shimotsu (2018) also impose additional

constraints on variance parameters during estimation. Given the similarities between the LMC-

LRT and the bootstrap approach–especially when the process is stationary and parameters are well

within the interior–we do not report results from a parametric bootstrap procedure that imposes

such constraints. However, we believe the LMC-LRT results presented below can shed light on

the bootstrap’s performance both when its assumptions hold and when they are violated. It is
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important to emphasize that the primary distinction between these approaches lies in how the null

distribution is estimated and, more fundamentally, in their respective assumptions regarding the

existence and approximation of an asymptotic distribution.

All test procedures discussed above, including those proposed in this paper, can be implemented

using the R package MSTest (Rodriguez-Rondon and Dufour, 2024), available via the Compre-

hensive R Archive Network (CRAN) and described in a companion paper by Rodriguez-Rondon

and Dufour (2024). All simulation results reported below were obtained using this package. For

all simulations, the nominal significance level is set at α = 0.05, and each result is based on 1,000

replications of the DGP.

Table 1: Empirical size of test when M0 = 1

Test ϕ = 0.10 ϕ = 0.90
T=100 T=200 T=500 T=100 T=200 T=500

H0 : M0 = 1 vs. H1 : M0 +m = 2
LMC-LRT 4.9 4.7 4.9 5.3 5.0 4.9
MMC-LRT 1.9 1.5 1.3 0.8 0.7 0.8
LMCmin 5.0 3.8 5.5 5.1 4.2 5.5
LMCprod 4.0 4.1 4.6 4.7 4.3 4.8
MMCmin 1.7 1.3 4.3 1.3 1.7 4.1
MMCprod 1.6 1.8 3.6 1.4 2.5 3.8
supTS 4.8 5.1 4.8 6.0 4.5 4.7
expTS 6.8 6.2 5.2 5.4 6.9 5.5

H0 : M0 = 1 vs. H1 : M0 +m = 3
LMC-LRT 5.2 5.4 4.8 4.6 4.1 5.3
MMC-LRT 2.5 2.3 1.5 1.2 0.8 1.0

Notes: The nominal level is 5%. LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte Carlo
Likelihood Ratio Tests proposed here, respectively. Rejection frequencies are obtained using 1000 replications. MC tests
use N = 99 simulations.

The results under the null hypothesis of no Markov switching (i.e., H0 : M0 = 1) are reported in

Table 1. The table consists of two panels: the first evaluates the alternative hypothesis of a Markov

switching model with two regimes, while the second considers a three-regime alternative. The

rejection frequencies of the LMC-LRT proposed in this work are remarkably close to the nominal

significance level. As expected from theory, the MMC-LRT exhibits empirical rejection rates at or

below 5% under the null hypothesis.

The results for the moment-based tests proposed by Dufour and Luger (2017)–namely LMCmin,

LMCprod, MMCmin, and MMCprod–are consistent with those of our Monte Carlo likelihood ratio

tests. The expTS test shows mild over-rejection in some cases with smaller sample sizes but

performs well when T = 500. This behavior is anticipated, as expTS is an asymptotic procedure.

In contrast, the supTS test demonstrates excellent size control across all sample sizes.
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Table 2: Empirical power of test when M0 = 1 & m = 1

Test
(p11, p22) = (0.90, 0.90) (p11, p22) = (0.90, 0.50)

ϕ = 0.10 ϕ = 0.90 ϕ = 0.10 ϕ = 0.90
T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500

∆µ
LMC-LRT 60.2 88.6 98.3 14.7 20.5 43.9 24.9 51.3 92.8 21.4 39.3 74.6
MMC-LRT 58.0 81.7 90.0 7.5 14.7 31.3 21.6 42.3 84.5 14.0 30.0 62.0
LMCmin 5.3 5.4 3.7 14.5 20.9 42.1 14.8 30.2 70.6 13.7 18.8 40.3
LMCprod 4.8 4.3 4.3 16.2 22.3 43.0 12.3 24.0 56.4 14.3 20.5 42.9
MMCmin 1.1 2.3 1.9 6.7 13.2 33.8 6.7 20.5 61.5 5.7 11.0 31.9
MMCprod 0.9 2.4 2.0 6.9 14.5 34.2 7.0 16.5 49.2 6.6 12.9 35.7
supTS 36.4 64.0 96.5 5.5 3.9 6.1 7.6 7.1 11.3 5.7 8.4 24.0
expTS 35.6 60.9 95.4 5.4 3.9 6.4 7.3 8.6 11.7 8.0 9.2 22.6

∆σ
LMC-LRT 52.4 84.1 99.8 46.0 80.9 99.8 42.1 69.0 96.2 38.7 65.5 95.1
MMC-LRT 41.8 79.7 92.6 38.0 76.8 94.3 39.1 61.3 93.2 32.9 58.0 91.3
LMCmin 38.1 63.6 95.5 39.5 63.3 95.2 47.8 72.7 95.5 47.4 72.2 95.6
LMCprod 40.5 66.3 96.3 39.7 66.5 96.5 48.9 72.9 95.4 48.8 72.8 95.1
MMCmin 25.8 51.8 92.9 24.8 52.4 92.6 35.0 65.2 94.1 33.1 65.3 94.2
MMCprod 28.9 57.7 95.1 27.3 57.5 94.3 35.8 64.8 94.1 34.8 65.6 94.3
supTS 32.4 58.0 98.9 32.2 67.4 91.6 29.9 46.4 94.7 30.0 50.3 92.1
expTS 40.1 62.6 99.3 54.1 84.7 92.2 43.9 68.3 95.2 52.8 78.6 93.6

∆µ & ∆σ
LMC-LRT 81.2 98.7 100.0 39.5 70.0 98.7 77.5 97.2 100.0 58.0 87.3 99.3
MMC-LRT 78.0 94.5 100.0 25.6 66.0 96.0 74.3 96.0 100.0 48.7 79.2 96.0
LMCmin 53.1 80.9 99.4 35.3 60.7 92.6 84.7 97.8 100.0 66.9 89.9 99.5
LMCprod 46.1 74.1 98.7 38.7 63.9 95.3 84.6 98.3 100.0 69.2 91.9 99.7
MMCmin 37.2 69.6 99.0 22.9 49.3 89.4 74.6 96.0 100.0 52.2 85.4 99.3
MMCprod 34.2 66.0 98.1 26.3 55.5 92.7 74.9 97.0 100.0 56.0 88.1 99.7
supTS 74.0 96.0 100.0 34.0 62.9 95.4 78.0 98.0 100.0 54.0 83.3 99.4
expTS 73.3 92.0 100.0 45.6 76.0 97.0 80.0 98.3 100.0 56.2 83.4 99.7

Notes: Here, we consider H0 : M0 = 1 vs. H1 : M0 +m = 2. The nominal level is 5%. LMC-LRT and MMC-LRT are
the Local Monte Carlo and Maximized Monte Carlo Likelihood Ratio Tests proposed here, respectively. Rejection
frequencies are obtained using 1000 replications. MC tests use N = 99 simulations.

To study the power properties of the tests, we consider DGPs with transition probabilities

(p11, p22) = (0.90, 0.90) and (p11, p22) = (0.90, 0.50). In both cases, the remaining transition proba-

bilities are set as pij = 1−pii for j ̸= i. In the first case, both regimes are symmetric and relatively

persistent. Given the symmetry, the stationary distribution is πππ = (π1, π2) = (0.50, 0.50), implying

that, on average, equal time is spent in each regime in the long run. In contrast, the second case

features asymmetric regimes, with one regime being more persistent than the other. This results

in πππ = (0.83, 0.17), indicating that one regime dominates in terms of long-run frequency.

Table 2 reports the empirical power of the tests. Since the MMC-LRT procedure accounts for

a wider range of nuisance parameter values consistent with the null compared to the LMC-LRT,

it consistently exhibits lower power across all settings. The same is true for the moment-based

approaches. Specifically, the LMCmin, LMCprod, MMCmin, and MMCprod procedures display the

weakest power when only the mean changes and persistence is low. The supTS and expTS tests

also exhibit very low power when only the mean changes and persistence is high. Qu and Zhuo
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(2021) offers further discussion on why the supTS test performs poorly under high persistence.

In contrast, the LMC-LRT and MMC-LRT proposed here demonstrate higher power in both of

these challenging scenarios involving changes in the mean only. When the variance changes, all tests

exhibit improved power, although the LMC-LRT and MMC-LRT generally continue to outperform

the others. This pattern remains when both the mean and variance change simultaneously, with our

proposed tests maintaining a power advantage despite overall improvements across all procedures.

Overall, in the case where H0 : M0 = 1 and H1 : M0 + m = 2, the LMC-LRT and MMC-

LRT maintain similar size properties to the alternative tests considered, while offering superior

power. This is not surprising, as the moment-based procedures, supTS, and expTS are all derived

primarily from the model under the null. As such, even in relatively simple settings where other

test procedures are applicable, the methods proposed here may offer a more powerful alternative.

Table 3: Empirical performance of test when M0 = 1, m = 1, & process is non-stationary

Test
Empirical size

T=100 T=200 T=500
LMC-LRT 4.5 4.9 5.7
MMC-LRT 2.2 2.3 4.5
LMCmin 4.0 3.7 5.6
LMCprod 3.8 4.7 5.6
MMCmin 1.4 1.5 3.1
MMCprod 1.5 2.0 2.6
supTS 2.2 1.8 93.4
expTS 2.6 38.3 98.2

Empirical Power
(p11, p22) = (0.9, 0.9) (p11, p22) = (0.9, 0.5)

T=100 T=200 T=500 T=100 T=200 T=500
∆µ

LMC-LRT 15.5 22.8 39.9 27.0 46.4 68.4
MMC-LRT 9.2 14.1 25.2 21.0 38.9 54.3
LMCmin 18.4 29.2 56.2 15.8 23.5 49.9
LMCprod 19.2 30.4 57.8 16.9 25.3 52.2
MMCmin 7.0 16.3 44.0 6.5 14.2 38.4
MMCprod 9.1 17.9 48.2 7.8 17.0 43.1

∆σ
LMC-LRT 41.8 76.3 99.1 36.2 61.2 93.9
MMC-LRT 23.5 41.3 91.2 25.2 48.9 91.8
LMCmin 38.9 63.1 94.8 45.6 71.6 95.4
LMCprod 38.4 65.4 96.6 48.0 73.0 95.6
MMCmin 19.5 44.1 89.1 26.0 53.4 93.3
MMCprod 21.8 46.8 90.1 27.4 54.4 93.3

∆µ & ∆σ
LMC-LRT 29.7 54.4 77.3 49.7 76.9 90.4
MMC-LRT 21.7 43.1 63.8 34.4 67.9 88.1
LMCmin 32.7 57.1 92.6 61.2 88.4 99.5
LMCprod 36.2 61.4 93.7 63.9 90.3 99.8
MMCmin 18.2 41.3 85.0 41.8 80.0 99.4
MMCprod 20.7 47.8 87.7 46.6 83.3 99.6

Notes: Here, we consider H0 : M0 = 1 vs. H1 : M0 +m = 2. The nominal level is 5%. Here, ϕ1 = 1.00 for all models
so that we have a non-stationary (random-walk) process. LMC-LRT and MMC-LRT are the Local Monte Carlo and
Maximized Monte Carlo Likelihood Ratio Tests proposed here, respectively. Rejection frequencies are obtained using
1, 000 replications. MC tests use N = 99 simulations.
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As previously discussed, a notable feature of the LMC-LRT and MMC-LRT is their applicability

even when the process is non-stationary or contains parameters on the boundary of the parameter

space. As mentioned in Section 3, in such cases the likelihood function is not theoretically well-

defined. Therefore, in these scenarios, our procedures are more accurately described as Local

Monte Carlo and Maximized Monte Carlo pseudo Likelihood Ratio Tests. While this distinction is

important, we continue to refer to them as LMC-LRT and MMC-LRT for consistency.

Table 3 reports the rejection frequencies under both the null and alternative hypotheses in the

non-stationary case where ϕ1 = 1.00. We evaluate the performance of the LMC-LRT and MMC-

LRT under unit-root DGPs. The results indicate that the supTS and expTS tests fail to maintain

proper size control. Specifically, as sample size increases and the process more closely resembles a

non-stationary one, these tests exhibit substantial over-rejection.

In contrast, the results suggest that Monte Carlo-based procedures exhibit remarkably accurate

size properties in the non-stationary case. This includes the moment-based tests proposed by

Dufour and Luger (2017). Under the alternative hypothesis, power improves when regimes are

asymmetric—particularly when only the mean changes or when both the mean and variance change.

All tests perform best with larger sample sizes and when the variance, or both the mean and

variance, differ under the alternative.

To our knowledge, simulations for the moment-based procedures in this non-stationary setting

were not reported in Dufour and Luger (2017). We are therefore the first to provide simulation

evidence on the performance of moment-based approaches for non-stationary processes.

Table 4: Empirical power of test when M0 = 1, m = 1, & parameter is at the boundary (p11, p22) =
(0.9, 1.0)

Test
ϕ = 0.10 ϕ = 0.90

T=100 T=200 T=500 T=100 T=200 T=500
∆µ

LMC-LRT 76.7 97.9 99.7 7.2 8.1 9.9
MMC-LRT 68.7 93.7 96.5 5.5 5.3 4.7

∆σ
LMC-LRT 30.8 56.0 91.9 27.8 52.1 93.5
MMC-LRT 24.6 50.3 86.4 23.3 48.8 82.7

∆µ & ∆σ
LMC-LRT 49.9 83.8 99.5 19.5 41.5 90.1
MMC-LRT 40.7 81.0 96.0 11.2 34.0 84.0

Notes: Here, we consider H0 : M0 = 1 vs. H1 : M0 +m = 2. The nominal level is 5%. LMC-LRT and MMC-LRT are
the Local Monte Carlo and Maximized Monte Carlo Likelihood Ratio Tests proposed here, respectively. Rejection
frequencies are obtained using 1, 000 replications. MC tests use N = 99 simulations.

Table 4 presents results for the previously discussed case where the regimes are asymmetric, with
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one regime being absorbing–i.e., the transition probability lies on the boundary of the parameter

space. Specifically, we consider (p11, p22) = (0.9, 1.0), where, as before, pij = 1− pii for j ̸= i.

In this setting, we find that low persistence combined with changes in the mean leads to higher

power for smaller sample sizes (T = 100 and T = 200). When the sample size increases to T = 500,

power is high in all scenarios, except in the case of high persistence and changes in the mean only.

Table 5: Empirical power of test when M0 = 1, m = 2

Test
(p11, p22, p33) = (0.9, 0.9, 0.9) (p11, p22, p33) = (0.9, 0.5, 0.5)

ϕ = 0.10 ϕ = 0.90 ϕ = 0.10 ϕ = 0.90
T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500

∆µ
LMC-LRT 84.6 98.3 100.0 59.0 86.2 99.5 90.5 99.9 100.0 69.6 95.6 100.0
MMC-LRT 80.0 93.0 95.3 51.4 77.3 92.1 88.7 97.0 99.7 58.7 91.0 96.1

∆σ
LMC-LRT 71.6 95.6 100.0 67.7 95.4 100.0 86.7 99.3 99.2 84.7 98.9 99.2
MMC-LRT 62.5 84.0 92.4 59.0 86.3 93.4 58.4 80.7 94.4 54.7 78.0 93.5

∆µ & ∆σ
LMC-LRT 85.5 99.9 100.0 77.1 95.9 100.0 99.6 100.0 100.0 84.9 99.2 100.0
MMC-LRT 79.4 90.1 98.1 60.6 92.0 94.3 99.1 93.3 96.1 74.0 97.0 100.0

Notes: Here, we consider H0 : M0 = 1 vs. H1 : M0 +m = 3. The nominal level is 5%. LMC-LRT and MMC-LRT are
the Local Monte Carlo and Maximized Monte Carlo Likelihood Ratio Tests proposed here, respectively. Rejection
frequencies are obtained using 1, 000 replications. MC tests use N = 99 simulations.

Table 5 reports the rejection frequencies of the LMC-LRT and MMC-LRT under the alternative

hypothesis when M0 = 1 and m = 2. That is, we consider a linear model under the null hypothesis

(i.e., H0 : M0 = 1) versus a Markov switching model with three regimes under the alternative (i.e.,

H1 : M0 +m = 3). The results show consistently high power across all cases considered, which is

expected given that the alternative is further from the null.

Table 6 presents results for the case where the null hypothesis involves two regimes (i.e., H0 :

M0 = 2) and the alternative consists of three regimes (i.e., H1 : M0 +m = 3). Generally, detecting

additional regimes when the null already involves multiple regimes is more challenging. Nonetheless,

the size results indicate that both proposed test procedures maintain appropriate size control.

For the DGPs considered here, power appears to depend more heavily on the presence of

changes in the mean. In particular, scenarios involving mean changes yield substantially higher

power than those involving changes in variance only. This finding contrasts with earlier results,

which suggested that variance changes were an important source of power for all test procedures.

However, when multiple regimes are present, a high-variance regime may obscure lower-variance

regimes and associated shifts in the mean. As a result, changes in location (mean) may become more

informative for distinguishing regimes. These findings highlight a potentially important avenue for
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future research.

Table 6: Empirical size & power of test when M0 = 2 & m = 1

Test
Empirical size

(p11, p22) = (0.90, 0.90) (p11, p22) = (0.90, 0.50)
ϕ = 0.10 ϕ = 0.90 ϕ = 0.10 ϕ = 0.90

T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500
∆µ

LMC-LRT 5.9 6.6 5.7 4.3 5.1 5.0 4.8 4.4 5.1 4.9 5.5 4.8
MMC-LRT 2.3 2.2 3.4 1.7 3.1 3.3 2.6 2.3 3.1 2.1 2.1 2.9

∆σ
LMC-LRT 4.6 4.5 5.5 5.3 4.9 4.3 4.5 5.8 5.7 4.2 4.6 5.9
MMC-LRT 2.2 2.1 3.1 2.0 3.2 2.8 2.6 2.9 3.0 2.6 2.4 3.8

∆µ & ∆σ
LMC-LRT 5.8 4.4 5.1 4.2 5.2 5.3 4.2 4.8 5.4 4.6 5.6 5.2
MMC-LRT 2.5 2.8 4.1 2.1 2.3 3.8 2.9 3.4 4.0 2.4 2.5 3.4

Empirical power

(p11, p22, p33) = (0.90, 0.90, 0.90) (p11, p22, p33) = (0.90, 0.50, 0.50)
ϕ = 0.10 ϕ = 0.90 ϕ = 0.10 ϕ = 0.90

T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500
∆µ

LMC-LRT 39.9 84.2 94.7 6.7 7.2 8.6 12.6 27.4 52.2 11.9 11.8 12.3
MMC-LRT 34.1 81.1 90.9 4.9 5.6 6.1 8.1 20.3 44.6 8.3 7.8 7.6

∆σ
LMC-LRT 8.5 24.0 57.6 10.0 22.2 56.2 6.4 9.0 20.7 5.8 8.9 21.1
MMC-LRT 6.5 19.2 52.7 6.2 17.7 49.9 4.1 6.9 18.3 4.1 5.6 14.2

∆µ & ∆σ
LMC-LRT 40.4 88.4 100.0 14.2 26.8 56.8 15.4 32.4 79.2 9.4 16.2 30.0
MMC-LRT 35.2 74.3 93.7 11.6 21.4 50.2 11.1 28.6 74.4 7.0 11.5 24.5

Notes: Here, we consider H0 : M0 = 1 vs. H1 : M0 +m = 2. The nominal level is 5%. LMC-LRT and MMC-LRT are
the Local Monte Carlo and Maximized Monte Carlo Likelihood Ratio Tests proposed here, respectively. Rejection
frequencies are obtained using 1000 replications. MC tests use N = 99 simulations.

Table 7: Empirical size of test when M0 = 2 & m = 1 for alternative DGPs

Test (p11, p22) = (0.5, 0.5) (p11, p22) = (0.7, 0.7)
T=100 T=200 T=500 T=100 T=200 T=500

(ϕ, µ1, µ2, σ) = (0.5,−1, 1, 1)
LMC-LRT 6.80 6.30 4.60 6.00 6.00 4.80
MMC-LRT 3.80 3.70 3.30 3.10 3.60 2.70
Boot-LRT - 7.16 4.43 - 6.07 4.20

Notes: LMC-LRT and MMC-LRT use N = 99 and are obtained using 1000 replications. Boot-LRT results are
taken from Kasahara and Shimotsu (2018)

Table 7 presents results for an alternative set of DGPs, still within the context of testing a

null hypothesis of two regimes (i.e., H0 : M0 = 2) against an alternative hypothesis of a Markov

switching model with three regimes (i.e., H1 : M0 +m = 3). For this comparison, we include two

classes of DGPs considered in Kasahara and Shimotsu (2018), and we also report the Boot-LRT

results from that paper, except for T = 100, as those were not provided by the authors.

As previously discussed, the parametric bootstrap and LMC-LRT procedures share many simi-
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larities. However, a key distinction is that the LMC-LRT does not require enforcing the additional

assumptions needed to ensure the asymptotic validity of the bootstrap when estimating the null

distribution. While larger sample sizes should improve the approximation quality of both proce-

dures, the LMC-LRT does not rely on the existence of an asymptotic distribution, allowing for

fewer simulations to achieve valid inference. In contrast, Kasahara and Shimotsu (2018) impose

such constraints and an additional one on the variance parameters during model estimation and

use N = 199 bootstrap simulations, whereas we use N = 99 and impose no such constraints. These

differences help explain the discrepancies observed between the LMC-LRT and the parametric

bootstrap test results.

Nonetheless, the results suggest that both procedures exhibit broadly similar patterns across

these DGPs. Specifically, Table 7 shows that both the LMC-LRT and the parametric bootstrap

tests exhibit some over-rejection for smaller sample sizes (T = 100 and T = 200), particularly in

the case of the bootstrap test. As expected, the rejection frequencies approach the nominal level

when T = 500. Meanwhile, the MMC-LRT performs as expected, maintaining rejection frequencies

at or below 5% even for small samples. This highlights the strength of the MMC-LRT as a valid

test procedure in both finite samples and asymptotic settings.

In summary, the univariate simulation results demonstrate that the proposed LMC-LRT and

MMC-LRT procedures perform well across a wide range of empirically relevant scenarios. Both tests

exhibit accurate size control, even in challenging cases involving multiple regimes, non-stationarity,

and boundary parameters (absorbing regimes). Moreover, they deliver superior power relative to

existing moment-based and asymptotic alternatives, particularly when changes in the mean or

both mean and variance are present. While the MMC-LRT provides robust inference even in small

samples, the LMC-LRT remains computationally efficient and exhibits favorable properties despite

the lack of a formally defined likelihood in some settings. These findings underscore the flexibility

and reliability of the proposed procedures for regime detection in univariate Markov switching

models.

4.2 Multivariate simulation results and synchronization testing

The importance of modeling structural changes in macroeconomic and financial time series, within

a multivariate context is well established. For instance, persistent shifts in mean or volatility–such

as those observed during the Great Moderation or in financial market volatility regimes–are often

common across many variables and well captured by Markov-switching models. Nonetheless, most
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multivariate applications restrict attention to two regimes for tractability, in part due to the lack

of reliable tests for selecting the number of regimes in higher-dimensional settings (e.g., Primiceri

(2005)).

We now turn to evaluating the performance of the proposed Local Monte Carlo (LMC-LRT) and

Maximized Monte Carlo (MMC-LRT) likelihood ratio tests in multivariate settings, as discussed

in Section 2. These models are particularly relevant in empirical applications involving multiple

macroeconomic or financial time series, whether across countries, asset classes, or sectors. They are

also suitable for testing hypotheses about common regime structures, including–but not limited to–

synchronized dynamics between variables. We revisit such an application in the empirical section

that follows.

We begin by assessing the size and power properties of the LMC-LRT and MMC-LRT when

testing the null hypothesis of a single regime (M = 1) against the alternative of two regimes

(M = 2) in a bivariate VAR(1) model. The experiments explore mean shifts (∆µ), variance shifts

(∆σ), and joint shifts. Results are summarized in Table 8.

Table 8: Empirical performance of test for bi-variate VAR model

Test
Empirical size

max(λ) = 0.10 max(λ) = 0.90
T=100 T=200 T=500 T=100 T=200 T=500

LMC-LRT 4.2 4.2 6.2 3.6 4.6 5.6
MMC-LRT 3.8 3.5 4.4 1.2 3.1 3.3

Empirical Power

Test
(p11, p22) = (0.90, 0.90) (p11, p22) = (0.90, 0.50)

max(λ) = 0.10 max(λ) = 0.90 max(λ) = 0.10 max(λ) = 0.90
T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500

∆µ
LMC-LRT 25.0 63.6 95.9 8.2 11.8 28.2 12.2 26.0 75.1 9.0 24.4 54.4
MMC-LRT 19.4 62.2 91.2 6.6 11.0 27.6 9.0 22.6 69.4 9.7 18.9 50.8

∆σ
LMC-LRT 46.4 90.6 100.0 53.0 91.8 100.0 34.4 68.6 100.0 38.2 73.6 96.7
MMC-LRT 45.6 82.4 100.0 51.0 85.2 99.8 31.8 64.6 100.0 34.4 70.1 92.8

∆µ & ∆σ
LMC-LRT 87.0 100.0 100.0 60.4 93.4 99.7 73.6 98.2 100.0 62.0 93.6 100.0
MMC-LRT 82.0 100.0 100.0 53.6 86.1 96.1 63.4 93.9 99.8 54.7 81.0 96.0

Notes: The nominal level is 5%. Here, max(λ) is the largest eigenvalue of the autoregressive coefficient matrix Φ.
LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte Carlo Likelihood Ratio Tests proposed
here, respectively. Rejection frequencies are obtained using 1, 000 replications. MC tests use N = 99 simulations.

The tests exhibit good size control and increasing power with sample size. The MMC-LRT per-

forms particularly well in small samples and in the presence of strong persistence or heteroskedas-

ticity. These results align closely with the univariate findings and confirm that the proposed testing

procedures extend effectively to multivariate settings. To the best of our knowledge, this is the first
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simulation-based evidence for regime testing procedures in multivariate Markov-switching models.

Having established the accuracy of the tests for detecting regime-switching in multivariate

systems, we now apply them in a related but distinct context: testing whether regime structures

are synchronized across equations. While similar logic could be applied in univariate settings–e.g.,

where different coefficients such as the mean and variance follow separate regime paths as considered

in Sims and Zha (2006)–the notion of (de)synchronization is particularly intuitive in a multivariate

framework. For example, one might wish to test whether each equation in a system is governed by

a common versus independent regime-switching process.

Related work in the structural break literature has proposed methods for detecting common

breaks across equations (see Oka and Perron (2018)) or across coefficients within a single equation

(see Perron et al. (2020)). However, such tools are not readily available in the Markov-switching

framework, owing to the complexity of estimation and inference with multiple regimes. The frame-

work proposed here fills this gap, enabling formal hypothesis tests for synchronized regime structures

in multivariate systems.

To illustrate this, we simulate data from a bivariate MS-VAR model in which each equation

may be governed by an independent Markov process. Our goal is to test whether the regime-

switching processes are synchronized (i.e., governed by the same latent state) or independent. If

both equations follow the same regime path, only two joint states are needed. But if they evolve

independently, up to four distinct joint regimes may arise—one for each possible state combination.

For example, consider the following bivariate model for economies a and b:

ya,t = µa,sa,t +

p∑
k=1

ϕaa,k

(
ya,t−k − µa,sa,t−k

)
+

p∑
k=1

ϕab,k

(
yb,t−k − µb,sb,t−k

)
+ σa,sa,tϵa,t

yb,t = µb,sb,t +

p∑
k=1

ϕba,k

(
ya,t−k − µa,sa,t−k

)
+

p∑
k=1

ϕbb,k

(
yb,t−k − µb,sb,t−k

)
+ σb,sb,tϵb,t

We are interested in testing whether the regime-switching behavior of the two economies is governed

by the same latent Markov process (i.e., Sa,t = Sb,t = St) or by independent processes (i.e.,

Sa,t ̸= Sb,t). Suppose both Sa,t and Sb,t each take values in {1, 2}. Then the joint state S∗
t must
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account for up to four possible combinations:

S∗
t = 1 if Sa,t = 1 & Sb,t = 1

S∗
t = 2 if Sa,t = 1 & Sb,t = 2

S∗
t = 3 if Sa,t = 2 & Sb,t = 1

S∗
t = 4 if Sa,t = 2 & Sb,t = 2

Synchronized regimes imply only two of these occur (e.g., S∗
t = 1 if Sa,t = 1 and Sb,t = 1 and

S∗
t = 2 if Sa,t = 2 Sb,t = 2), while desynchronization leads to three or four observable combinations,

depending on the degree of offset between sa,t and sb,t.

Interestingly, we can frame the problem as a test on the number of regimes in the MS-VAR

model:

H0 : M0 = 2 (synchronized cycles)

H1a : M0 +m = 3 (partial dependence) (29)

H1b : M0 +m = 4 (independent cycles)

In the following, simulations are designed such that both series follow two-regime Markov pro-

cesses, but desynchronization arises through lead-lag differences in regime transitions. The offset

duration is governed by a parameter ξ, scaled by T , which determines the time spent in misaligned

regimes.

Table 9: Empirical size & power of test for independent Markov processes

H0 : M = 2 vs. H0 : M = 3 H0 : M = 2 vs. H0 : M = 4

Test
Empirical size

T=100 T=200 T=500 T=100 T=200 T=500

LMC-LRT 1.2 2.6 4.0 3.0 4.0 5.8
MMC-LRT 1.0 1.8 2.8 2.1 2.2 3.1

Empirical power

ξ = 0.02 ξ = 0.10 ξ = 0.02 ξ = 0.10

T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500

LMC-LRT 5.0 8.0 41.2 3.8 52.8 98.8 28.6 41.0 90.8 42.0 100.0 100.0
MMC-LRT 3.4 7.3 34.6 2.0 44.9 92.6 20.9 37.1 85.2 38.2 98.9 100.0

Notes: The nominal level is 5%. LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte Carlo
Likelihood Ratio Tests. Rejection frequencies are obtained using 500 replications. MC tests use N = 99 simulations.
Each equation is generated M = 2 regimes and the parameter ξ along with the sample size T determine the duration
the (lead or lag) third and/or fourth regimes (i. e., duration is T × ξ).
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Table 9 reports the size and power of the LMC-LRT and MMC-LRT. The data-generating

process (DGP) allows both the mean and the covariance matrix in the bivariate MS-VAR model

to vary according to a latent Markov process. As before, we evaluate performance across sample

sizes T ∈ {100, 200, 500}.

The top panel presents empirical size results under the null hypothesis of M = 2 regimes,

tested against alternatives with M = 3 (left) and M = 4 (right). The LMC-LRT maintains

rejection frequencies close to the nominal 5% level, though some mild under-rejection is observed

when testing against the M = 3 alternative. As expected, the MMC-LRT behaves consistently

with the theoretical properties outlined in Dufour (2006), maintaining rejection frequencies at or

below the nominal level in all cases.

To evaluate power, the lower panel reports rejection frequencies under DGPs with three or

four regimes. These represent cases of partial (three regimes) or full (four regimes) independence

between the two Markov processes. The parameter ξ controls the duration of the extra regime(s),

determining the degree of temporal offset between the processes (e.g., lead-lag behavior). We

consider two values, ξ ∈ {0.02, 0.10}, so that the regime duration scales proportionally with sample

size: T × ξ.

The power results suggest that detecting partial desynchronization (i.e., three regimes) is chal-

lenging in smaller samples unless the third regime is sufficiently persistent (e.g., T = 200 with

ξ = 0.10). In contrast, both tests exhibit high power in detecting full independence (i.e., four

regimes), even when regime durations are short. This reflects the greater distinctness of regime

paths in the four-regime case, which facilitates detection.

In summary, the ability to detect synchronized versus independent regime structures using

the proposed tests depends on both the extent of misalignment and the available sample size.

Short-lived regimes can obscure partial independence unless a sufficiently long series is observed.

However, full independence is easier to detect, even in moderate samples. These findings highlight

the practical value of accurate finite-sample testing procedures when analyzing regime dynamics in

multivariate time series.

5 Applications

In this section, we begin by analyzing U.S. GNP and GDP growth rates, with a focus on GDP, as

it has become the more commonly used series in recent empirical studies. These series have been
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widely used in the literature to evaluate test procedures for Markov switching models, including

in Hansen (1992), Carrasco et al. (2014), Dufour and Luger (2017), Qu and Zhuo (2021), and

Kasahara and Shimotsu (2018), among others. All datasets used in this univariate application are

available in the MSTest R package, which facilitates replication of the estimation and hypothesis

testing results presented here.

We then turn to a second application in a multivariate setting. The objective is to apply the

LMC-LRT and MMC-LRT procedures to assess the synchronization of international business cycles.

This example illustrates the practical value of having a testing procedure that can accommodate

multivariate settings–such as Markov switching VAR models–and hypotheses involving more than

one additional regime (i.e., m > 1). These features are beyond the scope of previously proposed

tests in the literature. Moreover, this application highlights how the proposed methods can be used

to test for common breaks or shared regime structures–capabilities that have existed in the broader

structural break literature for quite some time–but now within a Markov switching framework.

5.1 U.S. GNP and GDP growth

Many procedures for testing the number of regimes in Markov switching models have used U.S.

GNP growth data, as it was one of the original applications in Hamilton (1989). Notable studies

employing U.S. GNP data for regime testing include Hansen (1992), Carrasco et al. (2014), and

Dufour and Luger (2017). Hansen (1992) examines the original quarterly sample from 1951:II to

1984:IV, as used in Hamilton (1989), with p = 4 lags and a specification where only the mean

changes across regimes. In this case, the proposed test fails to reject the null hypothesis of a linear

model (i.e., M = 1). Similarly, Carrasco et al. (2014) and Dufour and Luger (2017) also use this

sample and reach the same conclusion.

These latter two studies also consider an extended sample from 1951:II to 2010:IV, which

includes the Great Recession. They continue to use four lags (p = 4), but now also evaluate an

alternative where both the mean and variance change across regimes, as suggested by Kim and

Nelson (1999). Allowing for changes in variance is sensible for two reasons. First, the extended

sample includes the structural decline in macroeconomic volatility during the mid-1980s, known

as the Great Moderation. Second, since the objective is to capture recessionary episodes, it is

reasonable to assume that volatility increases during such periods. For this extended sample, both

Carrasco et al. (2014) and Dufour and Luger (2017) reject the null hypothesis of a linear model in

favor of a Markov switching model with M = 2 regimes, but only when the variance is allowed to
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change. As discussed in Qu and Zhuo (2021), when using GDP data, the inclusion of the Great

Recession appears to be crucial for the supTS test of Carrasco et al. (2014) to reject linearity.

However, when only the mean is allowed to change, the supTS and expTS tests continue to fail to

reject the null. In contrast, Qu and Zhuo (2021), using GDP rather than GNP data, find stronger

evidence in favor of a two-regime model even when only the mean is allowed to change.

To complement the existing literature, we consider the same two samples of U.S. GNP data

as in prior studies, along with an extended sample spanning 1951:II to 2024:II. Results from the

LMC-LRT and MMC-LRT applied to these three U.S. GNP growth rate samples are presented in

Table 10. For the first two samples, our findings are broadly consistent with earlier tests. However,

unlike Carrasco et al. (2014), we find evidence in favor of a two-regime model (M = 2) even when

only the mean is allowed to change in the second sample that includes the Great Recession. This

result is more in line with Qu and Zhuo (2021), who find similar evidence using U.S. GDP data.

Table 10: Results For U.S. GNP Growth Series Hypothesis Tests

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 3 vs.
H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT
∆µ

GNP 1951:II-1984:IV 0.35 0.93 - - - -
GNP 1951:II-2010:IV 0.03 0.05 0.06 0.23 - -
GNP 1951:II-2024:II 0.01 0.01 0.01 0.01 0.52 1.00

∆µ & ∆σ
GNP 1951:II-1984:IV 0.38 0.85 - - - -
GNP 1951:II-2010:IV 0.01 0.01 0.58 1.00 - -
GNP 1951:II-2024:II 0.01 0.01 0.02 0.04 0.70 1.00

Notes: The GNP 1951:II-1984:IV series (T = 135) is the same as the one used in Hamilton (1989), Hansen (1992), and Carrasco
et al. (2014). The GNP 1951:II-2010:IV series (T = 239) is the same as the one used in Carrasco et al. (2014) and Dufour and
Luger (2017). The GNP 1951:II-2024:II series (T = 293) is the GNP series from the St. Louis Fed (FRED) website. All MC test
results are obtained using N = 99. The MMC-LRT procedure uses a particle swarm optimization algorithm. Models for GNP use
p = 4 lags as in Hamilton (1989) while models for GDP use p = 1 lags as in Qu and Zhuo (2021).

We extend the analysis by formally testing the null hypothesis of M = 2 regimes against the

alternative of M = 3. To our knowledge, this is the first such test applied to U.S. GNP data for this

sample. In both the mean-only and mean-and-variance-switching specifications, we fail to reject

the M = 2 null, confirming that two regimes are sufficient. However, when we turn to the third,

longer sample, we reject the null of M = 2 in favor of a Markov switching model with M = 3

regimes. We further test this three-regime model against a four-regime alternative and fail to reject

the null, thereby supporting M = 3 as the preferred specification for the extended sample.

Figure 1 shows the smoothed regime probabilities for the M = 3 model in which both the

mean and variance change. Smoothed probabilities for additional models are shown in Figures 4–7.

30



Parameter estimates for this model and others that include regime-dependent variance are provided

in Table 15. In the M = 3 model, two regimes are expansionary with positive means, though one

is characterized by substantially lower volatility (µ1 = 1.87, µ2 = 1.31, σ1 = 1.09, σ2 = 0.49). This

reduction in volatility is consistent with the Great Moderation and is reflected in the smoothed

regime probabilities, which shift in the mid-1980s. The third regime represents a deep recessionary

state that captures both the Great Recession and the COVID-19 recession. Similar to the findings

in Gadea et al. (2018) and Gadea et al. (2019), we observe that the low-volatility regime re-emerges

after the Great Recession—and, in our case, again following the COVID recession.

Figure 1: Smoothed Probabilities of Regimes for US GNP when ∆µ & ∆σ and M = 3
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

Given that much of the recent literature now relies on U.S. GDP data, we now shift our focus

to this series. Both Qu and Zhuo (2021) and Kasahara and Shimotsu (2018), for example, use

U.S. GDP instead of GNP when testing the number of regimes in Markov switching models. For

this application, we consider the extended sample from 1951:II to 2024:II. This longer sample

is particularly interesting because it includes the COVID-19 period, which poses challenges for

macroeconomic modeling due to its stark departure from historical patterns.

Several approaches have been proposed to address the impact of the COVID-19 period. One

strategy is to treat it as a known structural break. A benefit of this approach is that, by incor-

porating explanatory variables to account for the shock, one may justify a simpler model spec-

ification—potentially requiring fewer regimes to capture the non-linearities in the series. More

generally, a key advantage of the testing procedure proposed here is its flexibility: users can include
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control variables to account for known structural features and then test whether the number of

regimes can be reduced conditionally, given those controls.

To assess the robustness of our procedure, we evaluate the number of regimes in U.S. GDP

growth under different treatments of structural breaks. Specifically, we include a dummy variable

equal to 1 from 2020:I to 2021:IV and 0 otherwise, to control for the COVID period. We also

include a second dummy equal to 1 from 1951:II to 1983:IV and 0 elsewhere, to control for the Great

Moderation.1 These simple mean-shift controls offer a baseline way to account for known structural

breaks. However, they are likely insufficient in capturing the full dynamics of such episodes, which

are typically driven by changes in both the conditional mean and conditional variance. As such,

these specifications are intended as a starting point, rather than a comprehensive treatment.

Accordingly, we examine four models: Model 1 includes no dummy variables; Model 2 includes

only the Great Moderation dummy; Model 3 includes only the COVID dummy; and Model 4

includes both dummies. For each specification, we test the number of regimes under two setups–

one where only the mean changes and another where both the mean and variance change across

regimes– leading to eight models in total. The results of these tests are reported in Table 11.

Table 11: Results For U.S. GDP Growth Series Hypothesis Tests With Known Breaks

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 3 vs.
H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT
∆µ

Model 1 0.01 0.01 0.01 0.01 0.76 1.00
Model 2 0.01 0.01 0.01 0.01 0.76 1.00
Model 3 0.01 0.01 0.01 0.01 0.94 1.00
Model 4 0.01 0.01 0.01 0.01 0.59 1.00

∆µ & ∆σ
Model 1 0.01 0.01 0.01 0.01 0.44 1.00
Model 2 0.01 0.01 0.01 0.01 0.35 1.00
Model 3 0.01 0.01 0.01 0.01 0.27 1.00
Model 4 0.01 0.01 0.01 0.01 0.24 1.00

Notes: The GDP 1951:II-2024:II series (T = 293) is the GPC1 series from the St. Louis Fed (FRED) website.
Model 1: no fixed exogenous regressors, Model 2: includes dummy variable treating Great Moderation as known
structural break, Model 3: includes dummy variable treating COVID period as known multiple structural breaks,
and Model 4: includes dummy variables treating Great Moderation and COVID period as known multiple
structural breaks. Specifically, the dummy variable for the Great Moderation takes values of 1 for the period
1951:II to 1983:IV, and 0 elsewhere. Similarly, dummy variable for the COVID period takes values of 1 for the
period 2020:I to 2021:IV, and 0 elsewhere. the All MC test results are obtained using N = 99. The MMC-LRT
procedure uses a particle swarm optimization algorithm. Models GDP use p = 1 lags as in Qu and Zhuo (2021).

As with the GNP growth data for the same sample period, we find evidence supporting a model

with M = 3 regimes for U.S. GDP growth. Unlike the GNP models, we use one lag (p = 1) in

1We first estimate a Markov switching model without this dummy and find strong evidence that one of the regimes
corresponds to the Great Moderation. We use the smoothed probabilities from this model to date the period.
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this case, consistent with the specification in Qu and Zhuo (2021). Since our sample differs slightly

from theirs, we first verified that a lag order of one remains appropriate and confirmed that this is

indeed the case.

To assess which of the eight candidate models is preferred for this sample, we apply a likeli-

hood ratio test (LRT) to evaluate the significance of the dummy variables. In this setting, the

conventional regularity conditions are satisfied, allowing us to rely on standard LRT inference.

Table 13 reports the estimates and log-likelihood values for each model. Across all specifications–

whether only the mean changes or both the mean and variance–the inclusion of dummy variables

does not significantly improve the log-likelihood, resulting in small LRT statistics and no statistical

significance.

In addition, in all cases, the model that allows for changes in both the mean and variance is

preferred to the corresponding model where only the mean changes. Taken together, these findings

indicate that a model with M = 3 regimes, regime-dependent means and variances, and no dummy

variables provides a sufficiently good fit to the data.

Figure 2: Smoothed Probabilities of Regimes for US GDP when ∆µ & ∆σ and M = 3
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

The smoothed regime probabilities for this model, shown in Figure 2, closely resemble those

obtained for the GNP case, though the parameter estimates differ slightly (i.e., µ1 = 0.79, µ2 = 0.72,

µ3 = −0.50, σ1 = 1.06, σ2 = 0.45, and σ3 = 6.5). Notably, the inclusion of dummy variables did not

alter the outcome of the hypothesis test for the number of regimes. This is likely because treating

these episodes as known structural breaks in the conditional mean is insufficient to capture their
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full effects.

In contrast, Markov switching models that allow for regime-dependent variances are better

equipped to account for such changes, which are central features of the Great Moderation and likely

the COVID-19 period. Incorporating more sophisticated specifications–such as heteroskedastic

error structures (e.g., GARCH) or structural breaks in the variance–may further improve model

performance and can be considered within our regime testing framework. Regardless of the chosen

specification, the testing procedures proposed here offer a useful tool for assessing whether a given

model adequately captures such features, or whether additional regimes are required.

Figure 3: Smoothed Probabilities of Regimes for US GDP when ∆µ & ∆σ and M = 4
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

It is also worth noting that, as shown in Figure 3, a model with M = 4 regimes can capture

relatively milder recessions as distinct episodes. In this specification, the post-COVID recovery

period is also identified as a separate regime. However, the log-likelihood value of the four-regime

model, reported in Table 13, is very close to that of the three-regime model, which explains why

the test fails to reject the null hypothesis of M = 3 regimes.

Although this difference is not statistically significant, the M = 4 specification may still be

of interest if the primary goal is to more finely distinguish phases of the business cycle, such as

separating deep from shallow recessions or identifying recovery periods explicitly.

In summary, the univariate empirical application highlights the effectiveness of the proposed

LMC-LRT and MMC-LRT procedures in identifying regime structure in U.S. output growth data.

For both GNP and GDP, we find consistent evidence supporting a three-regime model when both
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the mean and variance are allowed to change–especially in longer samples that include the Great

Recession and COVID-19 period. Importantly, our results appear to be robust to the inclusion of

control variables for known structural breaks in the conditional mean. These results underscore the

flexibility and reliability of our proposed tests in practical settings and motivate their use in more

complex multivariate applications, such as testing for synchronization in international business

cycles.

5.2 Synchronization of business cycles

The synchronization of business cycles has re-emerged as a topic of renewed interest in light of recent

global events, including the COVID-19 pandemic, persistent supply chain disruptions, and tariff

disputes. These shocks have highlighted vulnerabilities associated with deep economic integration.

Existing literature suggests that trade openness tends to amplify business cycle comovement across

countries (e.g., Dées and Zorell (2012)). While a variety of methodologies have been proposed to

measure business cycle synchronization, relatively few formal testing procedures exist. Moreover,

many available approaches yield mixed results, rely on restrictive assumptions (e.g., linearity), focus

primarily on correlations, or lack theoretical validation–particularly in finite samples. Examples

include the procedures proposed by Phillips (1991a) and Camacho et al. (2006).

Phillips (1991a) analyzes business cycle transmission between two economies using a four-regime

bivariate MS model. Regimes are defined by the joint states of both economies, and inference

is conducted based on the estimated 4 × 4 transition matrix. However, this approach can lead

to ambiguous conclusions: for example, the null hypotheses of both perfect correlation and full

independence may fail to be rejected for certain country pairs (e.g., US–UK), making interpretation

difficult.

Alternative strategies include estimating univariate MS models and correlating smoothed reces-

sion probabilities across countries (e.g., Guha and Banerji (1999), Artis (2004)). Yet Camacho and

Perez-Quiros (2006) show that such correlations are biased downward, particularly when countries

are in fact synchronized. To address this, Camacho and Perez-Quiros (2006) and Bengoechea et al.

(2006) propose a bivariate MS model with a desynchronization parameter δab, defined via a linear

combination of synchronized and unsynchronized regimes. They introduce a simulation-based test

of H0 : δab = 0 (perfect synchronization) against H1 : δab = 1 (full desynchronization). Though not

explicitly framed as such, their procedure resembles that of the Local Monte Carlo (LMC) test of

Dufour (2006).
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More recent contributions include Bayesian state-space models (e.g., Leiva-Leon (2014b)) and

frameworks allowing for time-varying synchronization (e.g., Leiva-Leon (2014a), Leiva-Leon (2017)).

These approaches offer flexibility for measuring dynamic interdependence but often assume only

two regimes and lack formal frequentist tests for the number of regimes. In contrast, the methods

developed here are grounded in frequentist inference, allow for more than two regimes, and provide

size-controlled tests of synchronization.

For our empirical application, we adopt a setup similar to Phillips (1991a), using quarterly

industrial production (IP) data and, since IP captures only the supply side of the economy, we also

include real GDP data following Camacho and Perez-Quiros (2006), for the United States, Canada,

the United Kingdom, and Germany. Specifically, we apply the Local Monte Carlo Likelihood Ratio

Test (LMC-LRT) and the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT) to bivariate

MS-VAR(1) models for three country pairs: (1) US–Canada, (2) US–UK, and (3) US–Germany.

These tests allow us to evaluate the null hypothesis of perfectly synchronized business cycles against

alternatives involving partial or full independence.

This approach offers two key advantages. First, it allows the data to determine the appropriate

regime structure, which may include multiple types of recessionary or expansionary states that differ

in timing or magnitude. Second, it accommodates various forms of desynchronization. For instance,

if each economy follows a two-regime Markov process but transitions occur at slightly different times,

a three-regime model may be more appropriate than a four-regime one. The methodology developed

in this work is flexible enough to capture such patterns. In addition, the MMC variant provides

exact inference in small samples—a critical advantage when using quarterly macroeconomic data.

We use seasonally adjusted quarterly data and examine two samples: 1985:I–2019:IV and

1985:I–2022:II, the latter of which includes the COVID-19 period. The starting point ensures

data consistency and avoids earlier volatility shifts associated with the Great Moderation. For each

country pair, we estimate a bivariate MS-VAR model with p = 1, as determined by a bottom-up

likelihood ratio testing procedure. This specification is consistent with Phillips (1991b) and other

studies that typically use one or no lags.

Figures 8 and 9 in the Appendix display the series for each country and sample. The ex-

treme fluctuations during the COVID-19 episode justify showing the full and pre-COVID samples

separately. The two GDP samples considered for each country are shown in Figure 9.

As evident in the full-sample figures, the COVID-19 shock introduces sharp but short-lived

volatility. Although some literature recommends treating such shocks as outliers or structural
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breaks, we do not do so here. Instead, we use unadjusted data throughout and leave robustness

checks for future work. Notably, in the previous subsection, we showed that controlling for COVID-

19 as a structural break in the conditional mean has little effect on the estimated number of regimes

in a univariate GDP model. Still, exploring alternative treatments for such shocks remains an

important avenue for future research.

Table 12: Results For Synchronization of Business Cycle Hypothesis Tests using GDP series

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 2 vs.
H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT
1985:I - 2019:IV (T = 140)

US-CA 0.02 0.04 0.20 0.65 0.17 0.67
US-UK 0.01 0.01 0.01 0.01 0.01 0.01
US-GR 0.03 0.05 0.27 0.54 0.11 0.51

1985:I - 2022:IV (T = 155)
US-CA 0.01 0.01 0.08 0.43 0.03 0.05
US-UK 0.01 0.01 0.13 0.21 0.01 0.01
US-GR 0.01 0.01 0.21 0.53 0.04 0.06

Notes: This table includes results when ∆µ & ∆σ as it is a statistically preferred model over a model where only ∆µ.
The GDP series are OECD Main Economic Indicator Releases obtained from the St. Louis Fed (FRED) website. All
MC test results are obtained using N = 99. The MMC-LRT procedure uses a particle swarm optimization algorithm.

Tables 12 here and 16 in the appendix report the results for real GDP and industrial production,

respectively. Each table contains results for both the pre-COVID sample ending in 2019:IV (top

panel) and the full sample ending in 2022:II (bottom panel).

We begin by testing H0 : M0 = 1 against Ha : M0 +m = 2 to assess whether regime-switching

dynamics are present. The first two columns of each table confirm significant regime-switching

behavior across all country pairs, justifying M0 = 2 as a reasonable baseline.

To test for synchronization, we next evaluate H0 : M0 = 2 against H1a : M0 + m = 3 and

H1b : M0 + m = 4, which test for partial and full independence, respectively. Results using real

GDP (Table 12) show that the US business cycle was synchronized with Canada and Germany prior

to COVID-19, but not with the UK. In the full sample, all country pairs show signs of increased

desynchronization, with particularly strong divergence post-COVID.

Industrial production results (Table 16) show broadly similar patterns with respect to the US

and Canada relationship. Prior to COVID-19, the US was largely synchronized with all three

economies. Post-COVID, evidence of desynchronization increases, especially between the US and

Canada.

These findings provide preliminary evidence that international business cycle synchronization

weakened following the COVID-19 shock. A plausible explanation is that national recoveries varied
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substantially in timing, policy response, and structural characteristics.

6 Conclusion

This paper proposes two new testing procedures for determining the number of regimes in Markov

switching models: the Local Monte Carlo Likelihood Ratio Test (LMC-LRT) and the Maximized

Monte Carlo Likelihood Ratio Test (MMC-LRT). Built on the Monte Carlo testing framework of

Dufour (2006), these procedures address long-standing challenges in hypothesis testing for regime-

switching models, particularly when standard tests, including the likelihood ratio test, are invalid

due to unidentified parameters, nonstandard asymptotic distributions, or restrictive assumptions.

The proposed tests are applicable in a wide range of settings, including those with non-stationary

processes, non-Gaussian errors, multivariate models, and cases where both the null and the alterna-

tive hypothesis involves more than one regime (M0 > 1 and m > 1). To our knowledge, this is the

first paper to introduce hypothesis testing procedures for multivariate Markov switching models

and provide such a general framework. The MMC-LRT is both asymptotically valid and exact

in finite samples, and is robust to identification issues–an important feature in Markov switching

settings. Simulation results confirm that both the LMC-LRT and MMC-LRT control test size effec-

tively and display strong power, even in empirically challenging environments. When compared to

existing alternatives such as the moment-based test of Dufour and Luger (2017) and the parameter

stability test of Carrasco et al. (2014), our tests perform comparably or better in standard cases

(M0 = m = 1), and are the only valid option in more general scenarios.

Two empirical applications demonstrate the practical value of the proposed tests. First, we

sequentially test for the number of regimes in U.S. real GNP and GDP growth series. While a

two-regime model suffices for U.S. GNP data through 2010, a three-regime specification better fits

extended samples ending in 2024:II. These findings corroborate earlier evidence of the Great Mod-

eration and suggest that the low-volatility regime reemerges following both the Great Recession and

the COVID-19 downturn. Although we account for potential structural breaks in the conditional

mean, our results indicate that a three-regime model remains preferable. Future work may explore

whether treating the Great Moderation and COVID periods as breaks in variance could yield a

more parsimonious model.

In the second application, we test for business cycle synchronization using MS-VAR models.

Our results show that business cycles were highly synchronized between the U.S. and other ma-
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jor economies pre-COVID, but that the inclusion of data through the pandemic weakens this

synchronization–especially between the U.S. and Canada. These findings illustrate the flexibility

of our framework for addressing questions of regime coherence and synchronization in multivariate

macroeconomic systems.

Overall, the proposed methodology provides a robust and flexible framework for regime testing

in both univariate and multivariate contexts, offering significant advantages in terms of generality,

finite-sample validity, and ease of implementation. All procedures are implemented in the MSTest

R package, described in a companion paper Rodriguez-Rondon and Dufour (2024). An interesting

avenue for future work involves applying these methods to Markov switching factor models, where

both the regime process and the factors are latent. This is the subject of ongoing research.
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7 Appendix

7.1 Additional results for U.S. GNP and GDP growth

Table 13: Comparison of Models with Dummy Variables for Known Structural Breaks

µ1 µ2 µ3 ϕ1 GMd CVd σ1 σ2 σ3 LogLike AIC BIC

∆µ

Model 1 7.473 0.748 -8.220 0.329 - - 0.819 - - -362.771 753.543 805.017

Model 2 7.473 0.748 -8.220 0.323 0.118 - 0.817 - - -362.032 754.063 809.214

Model 3 7.473 0.748 -8.220 0.329 - 0.084 0.819 - - -362.731 755.461 810.612

Model 4 7.473 0.748 -8.220 0.323 0.125 0.141 0.817 - - -361.919 755.838 814.666

∆µ & ∆σ

Model 1 0.794 0.718 -0.459 0.262 - - 1.07 0.449 6.499 -337.072 706.145 764.973

Model 2 0.795 0.717 -0.463 0.261 0.027 - 1.07 0.450 6.502 -337.020 708.039 770.544

Model 3 0.794 0.717 -0.442 0.260 - 0.185 1.07 0.450 6.437 -337.016 708.033 770.538

Model 4 0.800 0.717 -0.447 0.260 0.022 0.158 1.07 0.451 6.449 -336.984 709.967 776.149

Notes: The GDP 1951:II-2024:II series (T = 293) is the GPC1 series from the St. Louis Fed (FRED) website.

Model 1: no fixed exogenous regressors, Model 2: includes dummy variable treating Great Moderation as known

structural break and is labeled GMd, Model 3: includes dummy variable treating COVID period as known

multiple structural breaks and is labeled CVd, and Model 4: includes dummy variables treating Great

Moderation and COVID period as known multiple structural breaks. Specifically, the dummy variable for the

Great Moderation takes values of 1 for the period 1951:II to 1983:IV, and 0 elsewhere. Similarly, dummy variable

for the COVID period takes values of 1 for the period 2020:I to 2021:IV, and 0 elsewhere. All MC test results are

obtained using N = 99. The MMC-LRT procedure uses a particle swarm optimization algorithm. Models GDP

use p = 1 lags as in Qu and Zhuo (2021).

Table 14: Estimates Models for US GNP series

µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 ϕ4 σ1 σ2 σ3 p11 p12 p13 p21 p22 p23 p31 p32 p33 LogLike

M=1 1.51 - - 0.14 0.18 0.03 0.02 1.19 - - - - - - - - - - - -458.38

M=2 1.56 1.21 - 0.31 0.24 0.01 0.00 0.62 3.03 - 0.96 0.04 - 0.32 0.68 - - - - -363.79

M=3 1.87 1.31 -0.77 0.23 0.23 0.06 0.00 1.09 0.49 5.74 0.99 0.01 0.00 0.00 0.99 0.01 0.00 0.37 0.63 -341.57

Notes: The GNP 1951:II-2024:II series (T = 293) is the GNP series from the St. Louis Fed (FRED) website. The

models use p = 4 lags as in Hamilton (1989), Hansen (1992), Carrasco et al. (2014), and Dufour and Luger (2017).

45



Table 15: Estimates of Preferred Models for US GDP series

µ1 µ2 µ3 ϕ1 σ1 σ2 σ3 p11 p12 p13 p21 p22 p23 p31 p32 p33 LogLike

M=1 0.74 - - 0.10 1.09 - - - - - - - - - - - -437.54

M=2 0.80 0.11 - 0.30 0.68 3.00 - 0.96 0.04 - 0.47 0.53 - - - - -368.08

M=3 0.79 0.72 -0.46 0.26 1.06 0.45 6.50 0.97 0.03 0.00 0.01 0.98 0.01 0.32 0.00 0.68 -337.07

Notes: The GDP 1951:II-2024:II series (T = 293) is the GPC1 series from the St. Louis Fed (FRED) website.

The models use p = 1 lags as in Qu and Zhuo (2021).

Figure 4: Smoothed Probabilities of Regimes for US GNP when ∆µ only and M = 2
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.
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Figure 5: Smoothed Probabilities of Regimes for US GNP when ∆µ & ∆σ and M = 2
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

Figure 6: Smoothed Probabilities of Regimes for US GDP when ∆µ only and M = 2
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.
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Figure 7: Smoothed Probabilities of Regimes for US GDP when ∆µ & ∆σ and M = 2
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.
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7.2 Additional results for synchronization of business cycles

Figure 8: Industrial production for four countries starting in 1985:I to 2019:IV (top) and 2022:II (bottom)
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Figure 9: Real GDP for four countries starting in 1985:I to 2019:IV (top) and 2022:II (bottom)
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Table 16: Results For Synchronization of Business Cycle Hypothesis Tests using IP series

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 2 vs.

H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT

1985:I - 2019:IV (T = 140)

US-CA 0.01 0.01 0.19 0.73 0.23 0.65

US-UK 0.01 0.01 0.18 0.61 0.21 0.68

US-GR 0.01 0.01 0.58 1.00 0.76 1.00

1985:I - 2022:IV (T = 155)

US-CA 0.01 0.01 0.05 0.05 0.03 0.04

US-UK 0.01 0.01 0.18 0.48 0.12 0.37

US-GR 0.01 0.01 0.19 0.51 0.14 0.44

Notes: This table includes results when ∆µ & ∆σ as it is a statistically preferred model over a model where only ∆µ.

The IP series are OECD Main Economic Indicator Releases obtained from the St. Louis Fed (FRED) website. All MC

test results are obtained using N = 99. The MMC-LRT procedure uses a particle swarm optimization algorithm.
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