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Abstract

Markov switching models have wide applications in economics, finance, and other fields. Most
studies focusing on testing the number of regimes often focus on the null hypothesis of a single
regime (i.e., a linear model with no switching) versus two regimes. Even in such simple cases,
this type of problem raises issues of nonstandard asymptotic distributions, identification failure,
and nuisance parameters. This paper proposes Monte Carlo likelihood ratio tests for Markov
switching models, which address these issues and are applicable to more general settings where
a null hypothesis with M0 regimes can be tested against an alternative with M0 + m regimes
where both M0 ≥ 1 and m ≥ 1. This allows one to compare a broad class of Markov switching
and Hidden Markov Models. Applied to likelihood ratio statistics, our approach overcomes the
limitations of conventional tests, allowing for broader applicability to non-stationary processes,
non-Gaussian errors, and multivariate settings, which have seen little attention in the literature.
An important contribution is the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT),
an identification-robust procedure valid in finite samples and asymptotically. Simulation results
show that the proposed tests effectively control the level of the test and can provide good power
across different settings. An empirical application to U.S. GNP and GDP growth data suggests
a three-regime model, confirm evidence of the Great Moderation and identifying a return to
the low volatility regime post-Great Recession and post-COVID-19. In a second multivariate
application, we use our test procedures with Markov switching VAR models to test business
cycle synchronization. Preliminary evidence suggests that adding COVID data weakens the
synchronization between the U.S. and Canada.
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1 Introduction

Markov regime-switching models were first introduced by Goldfeld and Quandt (1973) and later

popularized by Hamilton (1989). They have since been widely used in economics and finance due

to their ability to treat a series as a non-linear process where the non-linearity arises from discrete

shifts. The process before and after a shift can be described as two separate regimes. For example,

using U.S. GNP growth, one regime could characterize a period of positive growth, while the other

represents a period of negative growth during recessions. Due to this flexibility, Markov switching

models have become widely used in macroeconomics and finance. For instance, Markov switching

models have been applied to the identification of business cycles [Chauvet 1998; Chauvet and Hamil-

ton 2006; Chauvet, Juhn, and Potter 2002; Diebold and Rudebusch 1996; Hamilton 1989; Kim and

Nelson 1999; Qin and Qu 2021], interest rate dynamics (Garcia and Perron 1996), financial mar-

kets (Marcucci 2005), conditional heteroskedasticity models [Augustyniak 2014; Gray 1996; Haas,

Mittnik, and Paolella 2004; Hamilton and Susmel 1994; Klaassen 2002], conditional correlations

(Pelletier 2006), state-dependent impulse response functions [see Sims and Zha 2006; Caggiano,

Castelnuovo, and Figueres 2017], and the identification of structural VAR models [Herwartz and

Lütkepohl 2014; Lanne, Lütkepohl, and Maciejowska 2010; Lütkepohl et al. 2021] to name a few.

More comprehensive surveys of this literature can be found in Hamilton (2010), Hamilton (2016),

and Ang and Timmermann (2012). Markov switching models also have applications outside the

macroeconomic and financial literature. Examples include climate change [see Golosov et al. 2014;

Dietz and Stern 2015], environmental and energy economics [see Cevik, Yıldırım, and Dibooglu

2021; Charfeddine 2017], industrial organization [see Aguirregabiria and Mira 2007; Sweeting 2013],

and health economics [see Hernández and Ochoa 2016; Anser et al. 2021], among others.

An important issue with Markov switching models is that the number of regimes must be

determined a priori. Since the number of regimes is not always known, it is of interest to test the

fit of a model with a certain number of regimes (e.g., M0 regimes) against an alternative model

with a different number of regimes (e.g., M0 +m regimes). However, standard hypothesis testing

techniques are not easily applicable in this setting because certain parameters of the model are

unidentified under the null hypothesis, and the usual regularity conditions needed to derive the

asymptotic distribution of test statistics are not satisfied. The study of the asymptotic distribution

of the likelihood ratio test for Markov switching models has received significant attention [see Carter

and Steigerwald 2012; Cho and White 2007; Garcia 1998; Hansen 1992; Kasahara and Shimotsu
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2018; Qu and Zhuo 2021]. A very important and noteworthy contribution within this setting is the

SupLR(Λϵ) test of Qu and Zhuo 2021. Still, most available procedures, including those focusing

on the likelihood ratio test approach, can only address settings where the null hypothesis assumes

a linear model (i.e., H0 : M0 = 1) and the alternative hypothesis is a Markov switching model

with two regimes (i.e., H1 : M0 + m = 2, where M0 = m = 1). The only exception is Kasahara

and Shimotsu (2018), who establish the asymptotic validity of the parametric bootstrap procedure

for the likelihood ratio test statistic when the null hypothesis involves a model with M0 regimes

and the alternative hypothesis is a model with M0 + 1 regimes, where M0 ≥ 1 and m = 1 (see

Proposition 21). However, this result applies to a limited class of models and relies on restrictive

assumptions. In addition to proposing the SupLR(Λϵ) test, Qu and Zhuo (2021) also demonstrate

the asymptotic validity of the parametric bootstrap procedure for a wider class of models (see

Proposition 1 and section 7), but still within the setting where M0 = m = 1 and also requires

restrictive assumptions. Meanwhile, other researchers have proposed alternative test procedures

based on moments of least-squares residuals (see Dufour and Luger 2017), parameter stability (see

Carrasco, Hu, and Ploberger 2014), or other moment-matching conditions (see Antoine et al. 2022).

In their seminal work, Carrasco, Hu, and Ploberger (2014) propose an optimal test for assessing

the consistency of parameters in random coefficient and Markov switching models. However their

test is best suited for cases where the null hypothesis is of linear model and the alternative hypothesis

is of a model with two regimes. This is because the null hypothesis of parameter stability assumes

a linear mode. As a result, this test cannot be used to compare general Markov switching models

where both M0 and m > 1. Furthermore, this parameter stability test and all other likelihood ratio

test approaches mentioned thus far, are valid only asymptotically. These tests aim to establish an

asymptotic distribution of the test statistic, which means they depend on assumptions required

to obtain asymptotic results, which can be restrictive in many cases. For example, a common

assumption is that the process under study is stationary with Gaussian errors. In the likelihood

ratio test literature, it is also common to assume a constrained parameter space to avoid the

parameter boundary problem. In contrast, Dufour and Luger (2017) propose a moment-based

approach using the Monte Carlo techniques described in Dufour (2006) that allows one to relax many

of these assumptions. Specifically, the authors introduce test statistics based on the moments of the

least-squares residuals, designed to capture different characteristics of a two-component mixture

distribution. As a result, their procedure still only applies to the basic case where M0 = m = 1,

similar to other methods, but by using Monte Carlo techniques, they propose a test procedure that
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is valid in finite samples and avoids many of the restrictive assumptions mentioned earlier.

In this paper, we build on the Monte Carlo procedures described in Dufour (2006) and apply

them to a likelihood ratio test setting for Markov switching models. This approach allows us to

address the issues that plague conventional hypothesis testing procedures, such as nonstandard

asymptotic distributions and nuisance parameters, within the likelihood ratio framework. Specif-

ically, we propose the Local Monte Carlo Likelihood Ratio Test (LMC-LRT) and the Maximized

Monte Carlo Likelihood Ratio Test (MMC-LRT) for Markov switching models, which can be used

to determine the number of regimes in both Markov switching models and Hidden Markov Mod-

els. These tests allow us to consider very general settings which include comparing models with

M0 regimes under the null hypothesis against models with M0 +m regimes under the alternative,

where both M0 ≥ 1 and m ≥ 1. Further, The MMC-LRT is an exact test and is valid both in

finite samples and asymptotically. It is also robust to identification issues, which are common when

dealing with Markov switching models. Both the LMC-LRT and MMC-LRT eliminate the need for

conditions typically required for asymptotic validity of likelihood ratio tests. For instance, we no

longer need to assume stationarity, Gaussian errors, or constrained parameter spaces. Both tests

can even be applied in multivariate settings, such as Markov-switching VAR models or multivariate

Hidden Markov models, which are settings that have not received attention in previous literature.

Specifically, these tests do not rely on the existence of an asymptotic distribution and, as a result,

can be applied in settings where previous test procedures, including the parametric bootstrap pro-

cedure, are not asymptotically valid or settings where the asymptotic validity simply hasn’t been

established in the literature.

Notably, non-stationary processes, non-Gaussian errors, multivariate settings, and cases m > 1

have received limited attention in the literature on hypothesis testing for the number of regimes in

Markov switching models, making this study a novel contribution. Simulation results demonstrate

that both the LMC-LRT and MMC-LRT effectively control the size of the test and exhibit better

power in many settings where alternative tests are available (i.e., when M0 = m = 1). Another

contribution of this paper is the application of the test proposed by Dufour and Luger (2017) to

non-stationary processes yt, offering new insights into this scenario. All test results in this paper

are implemented using the R package MSTest, described in a companion paper Rodriguez-Rondon

and Dufour (2024). Since Markov switching models are more general than Hidden Markov models,

we focus on mainly on Markov switching models throughout this study. However, the proposed

tests are also applicable to hidden Markov models.
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The next sections are structured as follows. Section 2 reviews notation, the Markov switching

models we are interested in, and briefly discusses estimation procedures. Section 3 introduces our

testing methodology. Section 4 presents and discusses simulation results for the size and power of

the proposed testing procedures, while comparing them the tests of Carrasco, Hu, and Ploberger

(2014) and Dufour and Luger (2017). Section 5 presents two empirical applications. In the first we

use the testing procedures proposed here to identify the number of regimes when modelling U.S.

GNP as previously considered in Hansen (1992)., Carrasco, Hu, and Ploberger (2014), and Dufour

and Luger (2017) but also consider U.S. GDP growth as in Qu and Zhuo (2021) and Kasahara

and Shimotsu (2018). In doing so, we find evidence of a three-regime model where both the mean

and the variance are subject to change. Our results confirm evidence of the Great Moderation

and identifying a return to the low volatility regime post-Great Recession and post-COVID-19.

We also consider controlling for the Great Moderation and COVID period as known structural

breaks to asses whether a simpler model, with fewer regimes, can be justified, but find that a three-

regime model is still preferred. In a second multivariate application, we use our test procedures

with Markov switching VAR models to test business cycle synchronization. Preliminary evidence

suggests that adding COVID data weakens the synchronization between the U.S. and Canada.

Finally, section 6 provides concluding remarks.

2 Markov-switching Model

AMarkov switching model is described as follows. Let (yt, wt) be a sequence of random vectors. The

vector wt is a finite-dimensional vector, and in this work, we allow yt to be either a scalar (univariate

setting) or a finite-dimensional vector (multivariate setting). Further, let St = {1, . . . ,M} be a

latent variable that determines the regimes at time t and let st denote the (observed) realization of

St. We define the information set Yt−1 = σ-field{. . . , wt−1, yt−2, wt, yt−1}. The Markov switching

model can be expressed as

yt = xtβ + ztδst + σstϵt (1)

where, in a univariate setting, yt is a scalar, xt is a (1× qx) vector of variables whose coefficients do

not depend on the latent Markov process St, zt is a (1×qz) vector of variables whose coefficients do

depend on the Markov process St, and ϵt is the error process. The number of regressors, qx, that

remain constant, and the number of regressors that change with St, qz, must sum to q = (qy×p)+qw,
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where qy = 1 in the univariate setting or larger than 1 in the multivariate setting, p is the number

of lags in the model, and qw is the number of exogenous regressors. As can be seen from (1), the

variance can also change according to the Markov process St. We can group all parameters in

θst = (β, δst , σst , vec(P)), where vec(·) is the vectorization operator that transforms a matrix to a

vector, and P is the transition matrix, which we describe in more detail below. When considering

the multivariate setting, we then have a covariance matrix Σst and make use of the vech(·) operator,

which takes the values under and on the main diagonal of the matrix since, given the symmetry,

these are the only parameters needed to summarize the covariance structure. In this case, β and

δst are matrices and so we must use vec(β) and vec(δst) in θst .

We can assume, for example, that the error process is distributed as a N (0, Iqy). It is important

to note, however, that for the testing procedure we propose below, the assumption of normality

is not required, and other distributions can be considered instead by simply using the appropriate

likelihood density function. Alternatively, even if the error process is not normally distributed, we

can continue to use the normal density function. In this case, the test presented below becomes

better described as a pseudo-Monte Carlo Likelihood Ratio Test for Markov switching models.

However, as will be described in the next section, the test is still valid in this case and in other

cases where the likelihood function may not be well-defined. For this reason, and for simplicity, we

continue to present the model using this normality assumption in what follows.

A Markov switching model is typically described as having lags of yt as explanatory variables.

That is, lags must be included in either xt or zt depending on whether we want the autoregressive

coefficients to change across regimes. This setting is very general and allows us to consider a trend

function within xt or zt. On the other hand, Hidden Markov models typically do not include lags

of the dependent variable. However, the dependence on past observations allows for more general

interactions between the dependent variable and the Markov process St, which can be used to model

more complex causal links between our variables of interest. Hence, a Hidden Markov model can be

understood as a simplified version of a Markov switching model, and for this reason, we focus on the

more general Markov switching case. Nonetheless, the results presented here still apply to Hidden

Markov models, which, as previously discussed, have a wide range of interesting applications.

As described in Hamilton (1994), for a model with M regimes, the one-step transition proba-
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bilities can be gathered into a transition matrix such as

P =


p11 . . . pM1

...
. . .

...

p1M . . . pMM


where, for example, pij = Pr(St = j | St−1 = i) is the probability of state i being followed by state

j. The columns of the transition matrix must sum to one to have a well-defined transition matrix

(i.e.,
∑M

j=1 pij = 1, ∀i). We can also obtain the ergodic probabilities, π = (π1, . . . , πM )′, which are

given by

πππ = (A′A)−1A′eN+1 & A =

IM −P

111′


where eM+1 is the (M + 1)th column of IM+1. These ergodic probabilities can be understood as

representing, in the long-run on average, the proportion of time spent in each regime.

Let f(yt|Yt−1; θ) denote the conditional density of yt given Yt−1, and assume it satisfies

yt|(Yt−1, st) ∼


f(yt|Yt−1; θ

1), if st = 1

...

f(yt|Yt−1; θ
M ), if st = M

(2)

for t = 1, . . . , T . The sample log likelihood conditional on the first p observations of yt is given by

LT (θ) = logf(yT1 |y0−p+1; θ) =
T∑
t=1

logf(yt|Yt−1; θ) (3)

where θ = (β, δ1, . . . , δM , σ1, . . . , σM , vec(P)), and where the vec(·) operator should also be applied

to β, δst , and Σst if working with a multivariate model. Here,

f(yt|Yt−1; θ) =

M∑
st=1

M∑
st−1=1

· · ·
M∑

st−p=1

f(yt, St = st, St−1 = st−1, . . . , St−p = st−p|Yt−1; θ) (4)
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and more specifically

f(yt, St = st, . . . , St−p = st−p|Yt−1; θ) =
Pr(S∗

t = s∗t |Yt−1; θ)√
2πσ2

st

× exp

{
−[yt − xtβ − ztδs∗t ]

2

2σ2
st

}
(5)

where we set

S∗
t = s∗t if St = st, St−1 = st−1, . . . , St−p = st−p

and Pr(S∗
t = s∗t |Yt−1; θ) is the probability that this occurs.

An alternative but related model is the Hidden Markov Model. Like Markov switching models,

Hidden Markov models are used to describe a process yt which depends on a latent Markov process

St, but as discussed in An et al. (2013), these models are used in the case where the process yt does

not depend on its own lags. However, the dependence on past observations allows for more general

interactions between yt and St, which can be used to model more complicated causal links between

economic or financial variables of interest. As a result, Hidden Markov models are a special, more

simple, case of Markov switching models and so the hypotheses testing procedure proposed in the

next section will also apply to these models. Still, it is worth noting that Hidden Markov models

have many applications including computational molecular biology [Baldi et al. 1994; Krogh, Mian,

and Haussler 1994], handwriting and speech recognition [Jelinek 1997; Nag, Wong, and Fallside

1986; Rabiner and Juang 1986; Rabiner and Juang 1993], computer vision and pattern recognition

(Bunke and Caelli 2001), and other machine learning applications.

Typically, Markov switching and Hidden Markov models are estimated using the Expecta-

tion Maximization (EM) algorithm (see Dempster, Laird, and Rubin 1977), Bayesian methods, or

through the use of the Kalman filter if using the state-space representation of the model. In very

simple cases, Markov switching models can also be estimated using Maximum Likelihood Estima-

tion (MLE). However, since the Markov process St is unobservable, and more importantly, the

likelihood function can have several modes of equal height, along with other unusual features that

can complicate estimation by MLE, this approach is not often used, except for simple cases where

M is small (e.g., M = 2). In this study, when necessary, we use the EM algorithm for estimating

Markov switching models. It is worth noting that, in practice, empirical estimates can sometimes

be improved by using the results of the EM algorithm as initial values in a Newton-type optimiza-

tion algorithm. This two-step estimation procedure is used to obtain the results presented in the
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empirical section of this paper. We omit a detailed explanation of the EM algorithm, as our focus

is on the hypothesis testing procedures proposed next. For the interested reader, the estimation

of a Markov switching model via the EM algorithm is described in detail in Hamilton (1990) and

Hamilton (1994), as well as in Krolzig (1997) for the Markov-switching VAR model.

3 Monte Carlo likelihood ratio tests

In this section, we introduce the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT) and

the Local Monte Carlo Likelihood Ratio Test (LMC-LRT) for Markov switching models, which

we propose in this paper. Similar to Garcia (1998) and the parametric bootstrap procedures

described in Qu and Zhuo (2021) and Kasahara and Shimotsu (2018), when parameters are not

identified under the null hypothesis, we assume that the null distribution depends only on the

remaining parameters. The LRT approach requires us to estimate the model under both the null

and alternative hypotheses in order to obtain the log-likelihoods for each model. The log-likelihood

for models with M > 1 regimes is given by equations (3) - (5):

LT (θi) = logf(yT1 |y0−p+1; θ) =

T∑
t=1

logf(yt|Yt−1; θ)

where

θi = (β, δ1, . . . , δM , σ1, . . . , σM , vec(P))′ ∈ Ω̄i . (6)

The subscript of i underscores the fact that θi represents the parameter vector under the null

hypothesis when i = 0, or under the alternative hypothesis when i = 1. Note that in a multivariate

setting, we simply treat β, δst , and Σst as matrices, and apply the vec(·) operator to vectorize

them, as discussed in the previous section. The set Ω̄i satisfies any theoretical restrictions we wish

to impose on θi (e.g., σi > 0). For example, as noted by Qu and Zhuo (2021) and Kasahara and

Shimotsu (2018), for the asymptotic validity of the parametric bootstrap and the SupLR(Λϵ), we

would need to impose that pi,j ∈ (ϵ, 1 − ϵ) on Ω̄i. However, in our setting, this restriction is not

necessary. When we consider the null hypothesis with M = 1, the log-likelihood is given by

L0
T (θ0) = log f(yT1 | y0−p+1; θ0) =

T∑
t=1

log f(yt |Yt−1; θ0) (7)
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where

f(yt |Yt−1; θ0) =
1√
2πσ2

exp

{
−[yt − xtβ]

2

2σ2

}
, (8)

θ0 = (β, σ)′ ∈ Ω̄0. (9)

Here, δst and vec(P) are excluded because there are no parameters that change under the null

hypothesis of no Markov regime- switching. Also, note that in general Ω̄0 has a lower dimension

than Ω̄1.

For simplicity of exposition, consider first the straightforward and common scenario where

we want to compare a null hypothesis of M0 = 1 regime (i.e., no Markov switching) against an

alternative hypothesis of a Markov switching model with M0 + m = 2 regimes. In this case, the

null and alternative hypotheses can be expressed as:

H0 : δ1 = δ2 = δ for some unknown δ , (10)

H1 : (δ1, δ2) = (δ∗1 , δ
∗
2) for some unknown δ∗1 ̸= δ∗2 , (11)

where δi includes any parameter we consider to be governed by the Markov process St. In general,

when M0 ≥ 1 and m ≥ 1, we need to consider different combinations of restrictions under the

null hypothesis. For example, when considering H0 : M0 = 2 against H1 : M0 +m = 3, we must

account for the following cases: i. δ1 = δ2 and δ1 ̸= δ3, ii. δ1 = δ3 and δ1 ̸= δ2, or iii. δ2 = δ3

and δ2 ̸= δ1. Using the likelihood ratio test statistic allows us to consider these combinations

directly by comparing the likelihoods of the null and alternative hypotheses. For this reason, and

for convenience, we continue with the notion of comparing H0 : M0 against H1 : M0 + m, where

both M0 and m ≥ 1.

Clearly, H0 is a restricted version of H1 for each θ0 ∈ Ω̄0, we can find θ1 such that

L0
T (θ0) = LT (θ1) , θ1 ∈ Ω0, (12)

where Ω0 is the subset of vectors θ1 ∈ Ω̄1 such that θ1 satisfies H0. Under H0, the vector θ0 ∈ Ω̄0

consists of nuisance parameters: the null distribution of any test statistic forH0 depends on θ0 ∈ Ω̄0.

In this context, the null distribution of the test statistic is, in fact, completely determined by θ0.

9



The likelihood ratio statistic for testing H0 against H1 can then be expressed as

LRT = 2[L̄T (H1)− L̄T (H0)] (13)

where

L̄T (H1) = sup{LT (θ1) : θ1 ∈ Ω̄1} , (14)

L̄T (H0) = sup{L0
T (θ0) : θ0 ∈ Ω̄0} = sup{LT (θ1) : θ1 ∈ Ω0} . (15)

The null distribution of LRT depends on the parameter θ0 ∈ Ω̄0. Now, let LR
(0)
T denote a real

random variable, computed from observed data when the true parameter vector is θ0. Since the

model in (1) is parametric, we can use it to generate a vector of N i.i.d. replications of LRT for

any given value of θ0 ∈ Ω̄0:

LR(N, θ0) := [LR
(1)
T (θ0), . . . , LR

(N)
T (θ0)]

′, θ0 ∈ Ω̄0 . (16)

That is, we will assume that

Assumption 3.1 LR
(0)
T is a real random variable and LR(N, θ0) a real random vector, all defined

on a common probability space (F ,Yt−1, Pθ0) such that the random variables LR
(0)
T , LR

(1)
T (θ0), . . . ,

LR
(N)
T (θ0) are exchangeable for some θ0 ∈ Ω̄0, each with distribution function F [x | θ0].

Note that generating N i.i.d. replications of LRT using (1) requires knowledge of the distribution

of ϵt. The procedure proposed here is quite general, allowing us to consider any distribution for ϵt,

including non-Gaussian distributions. In the case of non-Gaussian distributions, we simply need to

use the appropriate likelihood function in (3) - (5) or (7) - (8). However, even when the distribution

of ϵt is non-Gaussian or unknown, we can continue to work with the Gaussian density function. In

such cases, we refer to this approach as Monte Carlo pseudo-likelihood ratio tests. Next, we define

F̂N [x | θ0] := F̂N [x; LR(N, θ0)] =
1

N

N∑
i=1

I[LR
(i)
T (θ0) ≤ x] (17)

ĜN [x | θ0] := ĜN [x; LR(N, θ0)] = 1− F̂N [x; LR(N, θ0)] (18)

where I(C) := 1 if condition C holds, and I(C) = 0 otherwise. F̂N [x | θ0] is the sample distribution

of the simulated statistics, and ĜN [x | θ0] is the corresponding survival function. Then, the Monte
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Carlo p-value is given by

p̂N [x | θ0] =
NĜN [x | θ0] + 1

N + 1
. (19)

Alternatively, using the relationship

RLR[LR
(0)
T ; N ] = NF̂N [x; LR(N, θ0)]

=
N∑
i=1

I[LR
(0)
T ≥ LRi

T (θ0)] (20)

we can define a Monte Carlo p-value as

p̂N [x | θ0] =
N + 1−RLR[LR

(0)
T ; N ]

N + 1
(21)

where, as can be seen from (20), RLR[LR
(0)
T ;N ] simply computes the rank of the test statistic using

the observed data within the generated series LR(N, θ0). We also make the following assumption,

Assumption 3.2 Let sup{ĜN [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} and inf{F̂N [LR

(0)
T |θ0] : θ0 ∈ Ω̄0} be Yt−1-

measurable and where Ω̄0 is a nonempty subset of Ω.

Now, we can make the following proposition

Proposition 3.1 (Validity of MMC-LRT for Markov switching models). Let LR
(0)
T (θ0) = LR

(0)
T ,

α(N + 1) be and integer, and suppose

Pr[LR
(i)
T = LR

(j)
T ] = 0 for i ̸= j, i, j = 1, . . . , N. (22)

Using assumptions 3.1 and 3.2, if θ0 ∈ Ω̄0, then for 0 ≤ α1 ≤ 1,

Pr[sup{ĜN [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} ≤ α1] ≤ Pr[inf{F̂N [LR

(0)
T |θ0] : θ0 ∈ Ω̄0} ≥ 1− α1] (23)

≤ I[α1N ] + 1

N + 1
(24)

where Pr[inf{F̂N [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} ≥ 1 − α1] = Pr[LR

(0)
T ≥ sup{F̂−1

N [1 − α1|θ0] : θ0 ∈ Ω̄0}] for

0 < α1 < 1 and so

Pr[sup{p̂N [LR
(0)
T |θ0] : θ0 ∈ Ω̄0} ≤ α] ≤ α for 0 ≤ α ≤ 1. (25)

where the last line follows from using (19), setting α1 = α − (1−α)
N , and noting that α = I[α(N+1)]

N+1
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whenever α and N are chosen such that α(N+1) is an integer, as assumed. Additionally, here, F̂−1

denotes the quantile function of F̂ . In this context, we refer to this procedure as the Maximized

Monte Carlo Likelihood Ratio Test for Markov switching models, and this proposition establishes

the validity of the test. This follows from Proposition 4.1 in Dufour (2006), so the proof directly

relies on the proof of Proposition 4.1.

This procedure is referred to as the Maximized Monte Carlo likelihood ratio test because (25) is

maximized with respect to θ0 ∈ Ω̄0. However, this parameter space can be very large, specifically

growing with the number of regressors considered and the number of regimes. Additionally, the so-

lution may not be unique, as the maximum p-value could be obtained by more than one parameter

vector. For this reason, numerical optimization methods that do not rely on derivatives are rec-

ommended to find the maximum Monte Carlo p-value within the nuisance parameter space. Such

algorithms include Generalized Simulated Annealing, Genetic Algorithms, and Particle Swarm [see

Dufour 2006; Dufour and Neves 2019]. As described in Dufour (2006), to facilitate optimization,

it is also possible to search within a smaller consistent subset of the parameter space, denoted as

CT . A consistent set can be defined using the consistent point estimate. For example, let θ̂0 be the

consistent point estimate of θ0. Then, we can define

CT = {θ0 ∈ Ω̄0 : ∥ θ̂0 − θ0 ∥ < c} (26)

where c is a fixed positive constant that does not depend on T and ∥·∥ is the Euclidean norm in

Rk.

Finally, we can also define CT to be the singleton set CT = {θ̂0}, which gives us the Local Monte

Carlo Likelihood Ratio Test (LMC-LRT) for Markov switching models. Here, the consistent set

includes only the consistent point estimate θ̂0. Generic conditions for the asymptotic validity of such

a test are discussed in section 5 of Dufour (2006), but these are more restrictive than those for the

MMC-LRT procedure. To reflect this, we replace F̂N [x | θ0] with F̂TN [x | θ0] = F̂N [x;LRT (N, θ0)]

and ĜN [x | θ0] with ĜTN [x | θ0] = ĜN [x;LRT (N, θ0)] where the subscript T is meant to allow the

test statistics and functions to change based on increasing sample sizes. As a result, the Local

Monte Carlo p-value is given by

p̂TN [x | θ0] =
NĜTN [x | θ0] + 1

N + 1
(27)

The asymptotic validity in this case refers to the estimate θ̂0 converging asymptotically to the
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true parameters in θ0 as the sample size increases. This is not related to the asymptotic validity

of the critical values as desired in Hansen (1992), Garcia (1998), Cho and White (2007), Qu and

Zhuo (2021), and Kasahara and Shimotsu (2018). Specifically, the LMC test can be interpreted

as the finite-sample analogue of the parametric bootstrap. This is because, like the parametric

bootstrap, the LMC procedure is only valid asymptotically as T → ∞ but, unlike the parametric

bootstrap, we do not need a large number of simulations (i.e., N → ∞), since we do not try to

approximate the asymptotic critical values nor assume that the distribution of the test statistic

converges asymptotically. Instead, we work with the critical values from the sample distribution

F̂ [x | θ0].

To be more specific, the MMC-LRT procedure will be valid even when an asymptotic distribu-

tion does not exist and the LMC-LRT procedure will also be valid as T → ∞ if this is the case. This

means the tests proposed here are much more general than the parametric bootstrap procedure

as validity does not require stationarity or working with constrained parameter spaces, which are

needed to obtain its asymptotic validity in the likelihood ratio setting (see Qu and Zhuo 2021 and

Kasahara and Shimotsu 2018 for example). In most cases, these assumptions are needed because

otherwise the likelihood function may not be well-defined. These are cases where our procedure

may again be better described as Monte Carlo pseudo-likelihood ratio test procedures. Further,

we are directly able to deal with cases where m > 1, non-Gaussian settings, and multivariate

settings where the asymptotic validity of the parametric bootstrap procedure has simply not yet

been established in the literature. Finally, this also allows the procedure to be computationally

efficient in the sense that we will not need to perform a large number of simulations with the aim of

obtaining asymptotically valid critical values. In fact, as can be seen from equations (21) and (27),

the number of replications N is taken into account in the calculation of the p-value both in the

numerator and the denominator so that it essentially remains fixed as N increases. As discussed

in Dufour (2006), building a test with level α = 0.05 requires as few as 19 replications, but using

more replications can increase the power of the test. For this reason, in our simulations results

we use N = 99 for our Monte Carlo procedure as in Dufour and Khalaf (2001) and Dufour and

Luger (2017), though it is also possible to use the procedure described in Davidson and MacKinnon

(2000) to determine the optimal number of simulations to minimize experimental randomness and

loss of power.

At this point we have introduced the MMC-LRT and LMC-LRT for Markov switching models.

We have also described how these tests are more general than the parametric bootstrap procedure
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and how they are useful even in settings where yt is a vector (multivariate setting), yt is non-

stationary, and ϵt is non-Gaussian. For hypothesis testing, the generality of our procedure even

extends to settings where m > 1, ensuring finite-sample validity for the MMC-LRT procedure, and

does not require working with a constrained parameter space.

We believe this third feature is especially important because there may be cases where L0
T (θ0) =

LT (θ1) for values θ1 ∈ Ω0 that lie on the boundary. Consider, for example, a scenario where M = 2

and p1,1, p2,1 → 1. In this case, the Markov switching model with M = 2 may be statistically

equivalent to a one-regime (no Markov switching) model. Generally, similar arguments can be

made for cases where M > 2. As a result, we believe allowing parameters, specifically transition

probabilities, to take values on the boundary is an important feature for comparing M0 with M0+m

regimes.

Another important aspect to consider is the case where regressors are weakly exogenous. So

far, we have discussed simulating the test statistic by using the parametric model in (1) and i.i.d.

replication of ϵt. In many applications of Markov switching models, where only lags of the observed

data yt are included as explanatory variables, this works perfectly fine. In fact, even in cases where

other regressors are included, as long as they are fixed or strictly exogenous so that we can treat

them as fixed in this context, we can proceed as previously discussed. However, as discussed in Qu

and Zhuo (2021), for the parametric bootstrap procedure, weakly exogenous regressors can lead to

size distortions. The same can be true for the LMC-LRT procedure proposed here. In such settings,

if the joint distribution of the dependent variable and regressors is unknown, we propose assuming

some functional form (e.g., an AR(p) model), use this relationship to jointly simulate them, and

then proceed as previously discussed.

4 Simulation Evidence

This section presents simulation evidence on the performance of the Local Monte Carlo (LMC-LRT)

and Maximized Monte Carlo Likelihood Ratio Tests (MMC-LRT) for Markov switching models that

are proposed here. Throughout, we will consider DGPs with the following form

yt = µst + ϕ1(yt−1 − µst−1) + σstϵt (28)

where ϵt ∼ N (0, 1), the mean and variance are allowed to switch according to the Markov process

St. Similar data generating processes (DGPs) have been considered in Carrasco, Hu, and Ploberger
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(2014), Dufour and Luger (2017), and Qu and Zhuo (2021). We specifically use some of the same

DGPs as Dufour and Luger (2017) to present simulation evidence for a wide range of scenarios,

including low persistence, high persistence, symmetric regimes, asymmetric regimes, changes in

the mean only, changes in the variance only, and cases where both the mean and variance change

simultaneously. Additionally, given the generality of our test procedure, we also consider cases

where M0 > 1 and m = 1, M0 = 1 and m > 1, both M0 > 1 and m > 1, when ϕ1 = 1.00, and when

transition probabilities take values at the boundary of the parameter space (e.g., p22 = 1). We also

consider three different sample sizes: T = 100, T = 200, and T = 500. We believe that these DGPs

cover many empirically relevant settings that a researcher might encounter. For example, smaller

sample sizes and asymmetric regimes may be of particular interest for macroeconomic applications,

where quarterly observations are used, and some regimes are relatively short-lived. For cases where

we consider a linear model under the null hypothesis (i.e., H0 : M0 = 1) against a Markov switching

model with two regimes under the alternative hypothesis (i.e., H1 : M0 +m = 2), we compare the

performance of our proposed test procedures with those of Dufour and Luger (2017) and Carrasco,

Hu, and Ploberger (2014).

The tests proposed by Dufour and Luger (2017) are also based on the Monte Carlo procedure

described in Dufour (2006), but they avoid some of the statistical issues associated with likelihood

ratio tests by using the moments of the residuals from the restricted model. These moments aim

to capture characteristics of a mixture normal distribution. The test relies on four moments of the

residuals, resulting in four Monte Carlo (MC) p-values. To combine these p-values, two methods

are proposed, which can broadly be understood as being based on either the minimum or the

product of the four p-values. Dufour et al. (2004) and Dufour, Khalaf, and Voia (2014) provide

further discussion on these methods of combining test statistics for interested readers. As a result,

four test procedures are proposed in Dufour and Luger (2017): LMCmin, LMCprod, MMCmin, and

MMCprod. An advantage of these procedures is that they only require estimating the linear model

without Markov switching under the null hypothesis. However, unlike the LMC-LRT and MMC-

LRT, these tests can only be used to compare such linear models under the null with a Markov

switching model with two regimes under the alternative.

Carrasco, Hu, and Ploberger (2014) propose a test that is optimal for assessing the consistency

of parameters in random coefficient and Markov switching models. Their testing procedure is

generally suited to detect parameter heterogeneity, with the Markov switching model included as a

special case. Similar to the moment-based approach of Dufour and Luger (2017), a key advantage
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of this method is that it only requires estimating the model under the null hypothesis, but again

only applies to the simple case where there is no Markov switching under the null hypothesis. To

address the presence of nuisance parameters, the authors propose two alternatives: the first is a

Sup-type test, referred to as supTS, as in Davies (1987), and the second is an Exponential-type

test, referred to as expTS, as in Andrews and Ploberger (1994). As with Dufour and Luger (2017),

when applying the supTS and expTS tests, we consider values of ρ in the interval [ρ, ρ] = [−0.7,

0.7].

As previously mentioned, the consistency of the parametric bootstrap procedure when m = 1 is

shown by Qu and Zhuo (2021) for M0 = 1, and by Kasahara and Shimotsu (2018) for M0 > 1 under

more restrictive assumptions than those required for the test procedures proposed here. Specif-

ically, using the parametric bootstrap test requires constraining the parameter space away from

the boundary when simulating the null distribution. Furthermore, its consistency has only been

demonstrated for univariate, stationary, and Gaussian settings, though Kasahara and Shimotsu

(2018) consider some non-Gaussian settings also. In Kasahara and Shimotsu (2018), the authors

additional make use of other constraints on the variance parameters when estimating the models.

Given the similarity between the LMC-LRT and parametric bootstrap procedures for many of the

DGPs considered here—particularly when the process is stationary and parameters are sufficiently

far from the boundary—we do not include results from a parametric bootstrap procedure where

such constraints would be enforced. Moreover, we believe the results of the LMC-LRT procedure

provided below will shed light on the performance of the parametric bootstrap procedure when its

required assumptions are met, as well as in cases where its consistency has not yet been established

in the literature. It is important to emphasize, however, that the primary distinction between

these two procedures in these specific scenarios lies in the estimation of the null distribution and,

more fundamentally, in the differing assumptions about the existence and approximation of an

asymptotic distribution.

All the test procedures discussed so far, including those proposed in this work, can be eas-

ily implemented using the R package MSTest (see Rodriguez-Rondon and Dufour 2024), which

is available online through the Comprehensive R Archive Network (CRAN) and described in a

companion paper by Rodriguez-Rondon and Dufour (2024). All simulation results provided below

were computed using this R package. For these simulations, the nominal significance level is set at

α = 0.05, and the results are based on 1, 000 replications of the DGP.

The results under the null hypothesis of no Markov switching (i.e., H0 : M0 = 1) are reported in
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Table 1: Empirical size of test when H0 : M0 = 1

Test ϕ = 0.10 ϕ = 0.90
T=100 T=200 T=500 T=100 T=200 T=500

H1 : M0 +m = 2
LMC-LRT 4.9 4.7 4.9 5.3 5.0 4.9
MMC-LRT 1.9 1.5 1.3 0.8 0.7 0.8
LMCmin 5.0 3.8 5.5 5.1 4.2 5.5
LMCprod 4.0 4.1 4.6 4.7 4.3 4.8
MMCmin 1.7 1.3 4.3 1.3 1.7 4.1
MMCprod 1.6 1.8 3.6 1.4 2.5 3.8
supTS 4.8 5.1 4.8 6.0 4.5 4.7
expTS 6.8 6.2 5.2 5.4 6.9 5.5

H1 : M0 +m = 3
LMC-LRT 5.2 5.4 4.8 4.6 4.1 5.3
MMC-LRT 2.5 2.3 1.5 1.2 0.8 1.0

Notes: The nominal level is 5%. LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte
Carlo Likelihood Ratio Tests proposed here, respectively. Rejection frequencies are obtained using 1000
replications. MC tests use N = 99 simulations.

Table 1. The table includes two panels: the first considers the alternative hypothesis of a Markov

switching model with two regimes, while the second panel explores the alternative hypothesis of a

Markov switching model with three regimes. The rejection frequencies of the LMC-LRT proposed

here are remarkably close to the nominal level of the test. As suggested by theory, the MMC-LRT

proposed here has empirical rejection frequencies ≤ 5% under the null hypothesis. The results of

the moment-based test by Dufour and Luger (2017), namely LMCmin, LMCprod, MMCmin, and

MMCprod, are consistent with the results of our Monte Carlo likelihood ratio tests. However, the

expTS test shows mild over-rejection in some cases with smaller sample sizes but performs very

well when T = 500. This is expected, as it is an asymptotic test procedure. In contrast, the supTS

test demonstrates excellent size properties.

To study the power properties, we consider DGPs with transition probabilities (p11, p22) =

(0.90, 0.90) and (p11, p22) = (0.90, 0.50). In both cases, the other transition probabilities are given

by pij = (1− pii) for j ̸= i. In the first case, both regimes are symmetric and relatively persistent.

Given their symmetry, the vector πππ = (π1, π2) = (0.50, 0.50), meaning that, on average, equal time

is spent in each regime in the long run. In contrast, the second case is asymmetric, where one regime

is more persistent than the other, resulting in πππ = (0.83, 0.17) and more time spent in one regime on

average. Table 2 reports the empirical power of the tests. Since the MMC-LRT procedure considers

a wider set of nuisance parameter values compared to the LMC-LRT procedure, its power is lower

in all cases. This also applies to the moment-based approach. The LMCmin, LMCprod, MMCmin,

and MMCprod procedures exhibit the lowest power when only the mean changes and persistence is
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Table 2: Empirical Power of Test when M0 = 1, m = 1

Test
(p11, p22) = (0.90, 0.90) (p11, p22) = (0.90, 0.50)

ϕ = 0.10 ϕ = 0.90 ϕ = 0.10 ϕ = 0.90
T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500

∆µ
LMC-LRT 60.2 88.6 98.3 14.7 20.5 43.9 24.9 51.3 92.8 21.4 39.3 74.6
MMC-LRT 58.0 81.7 90.0 7.5 14.7 31.3 21.6 42.3 84.5 14.0 30.0 62.0
LMCmin 5.3 5.4 3.7 14.5 20.9 42.1 14.8 30.2 70.6 13.7 18.8 40.3
LMCprod 4.8 4.3 4.3 16.2 22.3 43.0 12.3 24.0 56.4 14.3 20.5 42.9
MMCmin 1.1 2.3 1.9 6.7 13.2 33.8 6.7 20.5 61.5 5.7 11.0 31.9
MMCprod 0.9 2.4 2.0 6.9 14.5 34.2 7.0 16.5 49.2 6.6 12.9 35.7
supTS 36.4 64.0 96.5 5.5 3.9 6.1 7.6 7.1 11.3 5.7 8.4 24.0
expTS 35.6 60.9 95.4 5.4 3.9 6.4 7.3 8.6 11.7 8.0 9.2 22.6

∆σ
LMC-LRT 52.4 84.1 99.8 46.0 80.9 99.8 42.1 69.0 96.2 38.7 65.5 95.1
MMC-LRT 41.8 79.7 92.6 38.0 76.8 94.3 39.1 61.3 93.2 32.9 58.0 91.3
LMCmin 38.1 63.6 95.5 39.5 63.3 95.2 47.8 72.7 95.5 47.4 72.2 95.6
LMCprod 40.5 66.3 96.3 39.7 66.5 96.5 48.9 72.9 95.4 48.8 72.8 95.1
MMCmin 25.8 51.8 92.9 24.8 52.4 92.6 35.0 65.2 94.1 33.1 65.3 94.2
MMCprod 28.9 57.7 95.1 27.3 57.5 94.3 35.8 64.8 94.1 34.8 65.6 94.3
supTS 32.4 58.0 98.9 32.2 67.4 91.6 29.9 46.4 94.7 30.0 50.3 92.1
expTS 40.1 62.6 99.3 54.1 84.7 92.2 43.9 68.3 95.2 52.8 78.6 93.6

∆µ & ∆σ
LMC-LRT 81.2 98.7 100.0 39.5 70.0 98.7 77.5 97.2 100.0 58.0 87.3 99.3
MMC-LRT 78.0 94.5 100.0 25.6 66.0 96.0 74.3 96.0 100.0 48.7 79.2 96.0
LMCmin 53.1 80.9 99.4 35.3 60.7 92.6 84.7 97.8 100.0 66.9 89.9 99.5
LMCprod 46.1 74.1 98.7 38.7 63.9 95.3 84.6 98.3 100.0 69.2 91.9 99.7
MMCmin 37.2 69.6 99.0 22.9 49.3 89.4 74.6 96.0 100.0 52.2 85.4 99.3
MMCprod 34.2 66.0 98.1 26.3 55.5 92.7 74.9 97.0 100.0 56.0 88.1 99.7
supTS 74.0 96.0 100.0 34.0 62.9 95.4 78.0 98.0 100.0 54.0 83.3 99.4
expTS 73.3 92.0 100.0 45.6 76.0 97.0 80.0 98.3 100.0 56.2 83.4 99.7

Notes: The nominal level is 5%. LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte
Carlo Likelihood Ratio Tests proposed here, respectively. Rejection frequencies are obtained using 1000
replications. MC tests use N = 99 simulations.

low. The supTS and expTS tests show very low power when only the mean changes and persistence

is high. Qu and Zhuo (2021) provides a more detailed discussion on why the supTS test has lower

power when persistence is higher. In contrast, the LMC-LRT and MMC-LRT proposed here have

higher power in both of these cases when only the mean changes. Once the variance changes, all

the tests show improved power performance, with the LMC-LRT and MMC-LRT still maintaining

higher power in most cases. This remains true when both the mean and variance change, despite

the increase in power for all the test procedures. Overall, for the case where H0 : M0 = 1 and

H1 : M0+m = 2, the LMC-LRT and MMC-LRT we propose have similar size properties to the other

test procedures considered here but demonstrate better power properties. This is not surprising

since the moment-based approaches, supTS, and expTS tests are based mainly on the model under

the null. Therefore, even in simpler settings where other test procedures are available, the tests we

propose may offer a better alternative due to their superior power properties.

As previously discussed, an interesting feature of the LMC-LRT and MMC-LRT is their applica-
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Table 3: Empirical Performance of test when process is non-stationary

Test
Empirical size

T=100 T=200 T=500
LMC-LRT 4.5 4.9 5.7
MMC-LRT 2.2 2.3 4.5
LMCmin 4.0 3.7 5.6
LMCprod 3.8 4.7 5.6
MMCmin 1.4 1.5 3.1
MMCprod 1.5 2.0 2.6
supTS 2.2 1.8 93.4
expTS 2.6 38.3 98.2

Empirical Power
(p11, p22) = (0.9, 0.9) (p11, p22) = (0.9, 0.5)

T=100 T=200 T=500 T=100 T=200 T=500
∆µ

LMC-LRT 15.5 22.8 39.9 27.0 46.4 68.4
MMC-LRT 9.2 14.1 25.2 21.0 38.9 54.3
LMCmin 18.4 29.2 56.2 15.8 23.5 49.9
LMCprod 19.2 30.4 57.8 16.9 25.3 52.2
MMCmin 7.0 16.3 44.0 6.5 14.2 38.4
MMCprod 9.1 17.9 48.2 7.8 17.0 43.1

∆σ
LMC-LRT 41.8 76.3 99.1 36.2 61.2 93.9
MMC-LRT 23.5 41.3 91.2 25.2 48.9 91.8
LMCmin 38.9 63.1 94.8 45.6 71.6 95.4
LMCprod 38.4 65.4 96.6 48.0 73.0 95.6
MMCmin 19.5 44.1 89.1 26.0 53.4 93.3
MMCprod 21.8 46.8 90.1 27.4 54.4 93.3

∆µ & ∆σ
LMC-LRT 29.7 54.4 77.3 49.7 76.9 90.4
MMC-LRT 21.7 43.1 63.8 34.4 67.9 88.1
LMCmin 32.7 57.1 92.6 61.2 88.4 99.5
LMCprod 36.2 61.4 93.7 63.9 90.3 99.8
MMCmin 18.2 41.3 85.0 41.8 80.0 99.4
MMCprod 20.7 47.8 87.7 46.6 83.3 99.6

Notes: The nominal level is 5%. Here, ϕ1 = 1.00 for all models so that we have a non-stationary (random-walk)
process. LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte Carlo Likelihood Ratio
Tests proposed here, respectively. Rejection frequencies are obtained using 1, 000 replications. MC tests use
N = 99 simulations.

bility even when the process is non-stationary or has parameters at the boundary of the parameter

space. As mentioned in Section 3, in such cases, the likelihood function is not theoretically de-

fined. Thus, in these scenarios, our tests may be better described as Local Monte Carlo and

Maximized Monte Carlo pseudo Likelihood Ratio Tests. While this distinction is noteworthy, we

continue to use the LMC-LRT and MMC-LRT acronyms for these settings. Table 3 reports the

rejection frequencies under both the null and alternative hypotheses for the non-stationary case

where ϕ1 = 1.00. Here, we consider unit-root DGPs and assess the performance of the LMC-LRT

and MMC-LRT procedures. These results suggest that the supTS and expTS tests cannot control

the size of the test. Specifically, when sample sizes get larger, and the process is more likely to ex-

hibit more properties consistent with non-stationary processes, these tests have a substantial degree

of over-rejection. In contrast, these results also suggest that use the Monte Carlo approach have
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remarkable size properties when the process is non-stationary. This includes the moment-based

tests of Dufour and Luger (2017). Under the alternative, the power increases when regimes are

asymmetric, particularly when only the mean changes or when both the mean and the variance

change. The tests perform best with larger sample sizes and when variance or both the mean and

variance change under the alternative hypothesis. Simulations for this setting for the moment-based

approach were not provided in Dufour and Luger (2017) and so we are the first to show simulation

evidence of the performance of the moment-based approach for non-stationary processes.

Table 4: Empirical Power of Test when M0 = 1, m = 2, & (p11, p22) = (0.9, 1.0)

Test
ϕ = 0.10 ϕ = 0.90

T=100 T=200 T=500 T=100 T=200 T=500
∆µ

LMC-LRT 76.7 97.9 99.7 7.2 8.1 9.9
MMC-LRT 68.7 93.7 96.5 5.5 5.3 4.7

∆σ
LMC-LRT 30.8 56.0 91.9 27.8 52.1 93.5
MMC-LRT 24.6 50.3 86.4 23.3 48.8 82.7

∆µ & ∆σ
LMC-LRT 49.9 83.8 99.5 19.5 41.5 90.1
MMC-LRT 40.7 81.0 96.0 11.2 34.0 84.0

Notes: The nominal level is 5%. LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte
Carlo Likelihood Ratio Tests proposed here, respectively. Rejection frequencies are obtained using 1, 000
replications. MC tests use N = 99 simulations.

Table 4 presents results for the previously mentioned interesting case where the regimes are

asymmetric, but now one state being absorbing and so the transition probabilities of this regime

lie at the boundary of the parameter space. Specifically, we consider (p11, p22) = (0.9, 1.0), where,

as before, pij = (1 − pii) for j ̸= i. Here, we find that low persistence and changes in the mean

contribute to higher power performance for smaller sample sizes of T = 100 and T = 200. When

the sample size is T = 500, the power is very high in all cases except when there is high persistence

and only changes in the mean.

Table 5 shows the rejection frequencies of the LMC-LRT and MMC-LRT proposed here under

the alternative hypothesis when M0 = 1 and m = 2. In other words, we consider a linear model

under the null hypothesis (i.e., H0 : M0 = 1) against an alternative of a Markov switching model

with three regimes (i.e., H1 : M0+m = 3). The results indicate that the power is consistently high

in all cases considered.

Now we consider a null hypothesis of a Markov switching model with two regimes (i.e., H0 :

M0 = 2) and an alternative hypothesis of a Markov switching model with three regimes (i.e.,

H1 : M0 +m = 3). For this comparison, we include two classes of the DGPs used in Kasahara and

20



Table 5: Empirical Power of Test when M0 = 1, m = 2

Test
(p11, p22, p33) = (0.9, 0.9, 0.9) (p11, p22, p33) = (0.9, 0.5, 0.5)

ϕ = 0.10 ϕ = 0.90 ϕ = 0.10 ϕ = 0.90
T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500 T=100 T=200 T=500

∆µ
LMC-LRT 84.6 98.3 100.0 59.0 86.2 99.5 90.5 99.9 100.0 69.6 95.6 100.0
MMC-LRT 80.0 93.0 95.3 51.4 77.3 92.1 88.7 97.0 99.7 58.7 91.0 96.1

∆σ
LMC-LRT 71.6 95.6 100.0 67.7 95.4 100.0 86.7 99.3 99.2 84.7 98.9 99.2
MMC-LRT 62.5 84.0 92.4 59.0 86.3 93.4 58.4 80.7 94.4 54.7 78.0 93.5

∆µ & ∆σ
LMC-LRT 85.5 99.9 100.0 77.1 95.9 100.0 99.6 100.0 100.0 84.9 99.2 100.0
MMC-LRT 79.4 90.1 98.1 60.6 92.0 94.3 99.1 93.3 96.1 74.0 97.0 100.0

Notes: The nominal level is 5%. LMC-LRT and MMC-LRT are the Local Monte Carlo and Maximized Monte
Carlo Likelihood Ratio Tests proposed here, respectively. Rejection frequencies are obtained using 1, 000
replications. MC tests use N = 99 simulations.

Table 6: Empirical Size of Test when M0 = 2 & m = 1

Test (p11, p22) = (0.5, 0.5) (p11, p22) = (0.7, 0.7)
T=100 T=200 T=500 T=100 T=200 T=500

(ϕ, µ1, µ2, σ) = (0.5,−1, 1, 1)
LMC-LRT 6.80 6.30 4.60 6.00 6.00 4.80
MMC-LRT 3.80 3.70 3.30 3.10 3.60 2.70
Boot-LRT - 7.16 4.43 - 6.07 4.20

Notes: LMC-LRT and MMC-LRT use N = 99 and are obtained using 1000 replications. Boot-LRT results are
taken from Kasahara and Shimotsu (2018)

Shimotsu (2018). We also present the Boot-LRT results from Kasahara and Shimotsu (2018) for

these DGPs, except for T = 100 as it was not reported. As previously discussed, the parametric

bootstrap and LMC-LRT procedures share similarities, but an important distinction is that the

LMC-LRT does not require enforcing assumptions previously discussed to obtain the asymptotic

validity of the bootstrap procedure when estimating the null distribution. Furthermore, while larger

sample sizes should better adhere to the asymptotic validity of both procedures, the LMC-LRT does

not rely on the existence of an asymptotic distribution, so fewer simulations are sufficient. Kasahara

and Shimotsu (2018) also apply other constraints on variance parameters during model estimation

and use N = 199 simulations, whereas we use N = 99 simulations and impose no constraints.

These features should explain the difference found LMC-LRT and parametric bootstrap test results.

Nevertheless, the results suggest that the two procedures exhibit similar patterns for these DGPs.

Specifically, Table 6 shows that both the LMC-LRT and parametric bootstrap procedures display

some over-rejection for smaller sample sizes of T = 100 and T = 200, particularly for the bootstrap

test. However, the rejection frequencies are much closer to the nominal level when T = 500, as

the theory suggests. Meanwhile, the MMC-LRT procedure performs as expected, maintaining a
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rejection frequency of ≤ 5%, even with T = 100 or T = 200. This underscores the contribution of

the MMC-LRT as a valid test procedure in both finite samples and asymptotically.

5 Applications

In this section, we first study U.S. GNP and GDP growth rates, with an emphasis on GDP data,

as this series has been more commonly used in recent years. All samples used for this univariate

application are included in the R package MSTest, which can easily reproduce all estimation and

hypothesis testing results presented here. We also consider a second application in a multivariate

setting. The goal here is to use the LMC-LRT and MMC-LRT tests to evaluate the synchronization

of international business cycles. This example is meant to demonstrate the value of having a test

procedure that can be applied to multivariate settings, such as Markov switching VAR models,

and to test a hypothesis where m > 1—both of which are cases that could not be handled by

previously proposed tests in the literature. A more detailed analysis of testing the synchronization

of international business cycles is provided in Rodriguez-Rondon and Dufour (2024).

5.1 U.S. GNP and GDP growth

Many of the procedures for testing the number of regimes in Markov switching models have used

U.S. GNP growth data, as it was one of the original applications of these models in Hamilton (1989).

Studies that have utilized U.S. GNP data for regime testing include Hansen (1992), Carrasco, Hu,

and Ploberger (2014), and Dufour and Luger (2017). Hansen (1992) examines the original quarterly

sample from 1951:II to 1984:IV used by Hamilton (1989), with p = 4 and allowing only the mean

to change across regimes, as in the original model. In this case, the proposed test fails to reject the

null hypothesis of a linear model (i.e., M = 1). Similarly, Carrasco, Hu, and Ploberger (2014) and

Dufour and Luger (2017) also use the same sample and fail to reject the null of a linear model for

this sample.

These studies also consider an extended sample from 1951:II to 2010:IV, which includes the

Great Recession. They continue to use a model with four lags (p = 4), but now also consider

an alternative where both the mean and variance change across regimes, as suggested by Kim

and Nelson (1999). Allowing variance to change is a sensible feature for two reasons. First, the

second period includes the structural decline in variance around the mid-1980s, known as the Great

Moderation. Second, since the goal is to capture recessionary periods, it is reasonable to assume
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that variance would increase during such periods of distress. Both Carrasco, Hu, and Ploberger

(2014) and Dufour and Luger (2017) reject the null hypothesis of a linear model in favor of a

Markov switching model with M = 2 regimes for this second sample when the variance is allowed

to change. As discussed in Qu and Zhuo (2021), the inclusion of the Great Recession appears to be

crucial for the supTS test of Carrasco, Hu, and Ploberger (2014) to reach this conclusion. However,

if only the mean is allowed to change, the supTS and expTS tests continue to fail to reject the null

hypothesis of a linear model. On the other hand, in Qu and Zhuo (2021), using GDP data, the

authors find more evidence for a model with M = 2 regimes, even when only the mean is allowed

to change.

Table 7: Results For U.S. GNP Growth Series Hypothesis Tests

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 3 vs.
H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT
∆µ

GNP 1951:II-1984:IV 0.35 0.93 - - - -
GNP 1951:II-2010:IV 0.03 0.05 0.06 0.23 - -
GNP 1951:II-2024:II 0.01 0.01 0.01 0.01 0.52 1.00

∆µ & ∆σ
GNP 1951:II-1984:IV 0.38 0.85 - - - -
GNP 1951:II-2010:IV 0.01 0.01 0.58 1.00 - -
GNP 1951:II-2024:II 0.01 0.01 0.02 0.04 0.70 1.00

Notes: The GNP 1951:II-1984:IV series (T = 135) is the same as the one used in Hamilton (1989), Hansen (1992), and Carrasco,
Hu, and Ploberger (2014). The GNP 1951:II-2010:IV series (T = 239) is the same as the one used in Carrasco, Hu, and Ploberger
(2014) and Dufour and Luger (2017). The GNP 1951:II-2024:II series (T = 293) is the GNP series from the St. Louis Fed (FRED)
website. All MC test results are obtained using N = 99. The MMC-LRT procedure uses a particle swarm optimization algorithm.
Models for GNP use p = 4 lags as in Hamilton (1989) while models for GDP use p = 1 lags as in Qu and Zhuo (2021).

To complement this part of the literature, we also consider these two samples of US GNP data,

along with an extended sample ranging from 1951:II to 2024:II. The results of the LMC-LRT and

MMC-LRT for these three US GNP growth rate samples are presented in 7. For the first two

samples, our results mostly align with other proposed tests. However, unlike Carrasco, Hu, and

Ploberger (2014), we find evidence supporting a model withM = 2 regimes, even when only changes

in the mean are considered in the second sample that includes the Great Recession. This finding is

more in line with the results of Qu and Zhuo (2021) for similar samples of US GDP data. We further

extend this analysis by comparing the preferred M = 2 model under the null hypothesis to a model

with M = 3 regimes under the alternative. To the best of our knowledge, this is the first time this

hypothesis has been tested for this sample of US GNP. In doing so, we confirm that a model with

M = 2 regimes is indeed sufficient to explain this sample, both when only the mean changes and

when both the mean and variance change. On the other hand, when we consider the third, larger
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sample of US GNP, we reject the null hypothesis of M = 2 regimes in favor of a Markov switching

model with M = 3 regimes. We confirm this model by considering an alternative with four regimes

but fail to reject the null hypothesis of a Markov switching model with M = 3 regimes when doing

so. Figure 1 shows the smoothed regime probabilities for the model with M = 3 when both the

mean and the variance can change. The smoothed probabilities for some of the other models being

considered here are found in Figures A1 - A3. The estimates for this model and others that allow

the variance to change are reported in A3. For here, we observe that two regimes are expansionary,

with positive means, though the second has significantly lower volatility (i.e., µ1 = 1.87, µ2 = 1.31,

σ1 = 1.09, and σ2 = 0.49). This reduction in volatility is consistent with the Great Moderation

and this is confirmed by examining the smoothed probabilities of these two regimes, which switch

around the mid-1980s. In this case, the third regime is a deep recessionary regime, capturing only

the Great Recession and COVID recession. Like Gadea, Gómez-Loscos, and Pérez-Quirós (2018)

and Gadea, Gómez-Loscos, and Pérez-Quirós (2019), we find that the low-volatility period returns

after the Great Recession. Here, we also find that the low-volatility period returns after the recent

COVID recession.

Figure 1: Smoothed Probabilities of Regimes for US GNP when ∆µ & ∆σ and M = 3
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

Since most of the recent literature uses US GDP data, we now turn to this series. For testing

the number of regimes in a Markov switching model, Qu and Zhuo (2021) and Kasahara and

Shimotsu (2018) also use US GDP data instead of GNP data. When using US GDP data, we only

consider the larger sample from 1951:II to 2024:II. This larger sample is especially interesting as it
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includes the more recent COVID-19 period, which is known to be problematic when working with

many macroeconomic variables due to its stark difference from the rest of the sample. Various

approaches have been proposed for dealing with this period. One approach involves treating it as a

known structural break. One advantage of treating it as a known structural break, by for example

incorporating explanatory variables that account for it, is that such an approach can justify using

a simpler model, potentially requiring fewer regimes to capture all the non-linearities in the series.

For this reason, we evaluate the robustness of the resulting number of regimes proposed by our

method when testing US GDP growth data by treating this period as a known structural break

in the mean. This is done by including a dummy variable that takes a value of 1 from 2020:I to

2021:IV and 0 elsewhere. We also consider a dummy variable that takes a value of 1 for the period

from 1951:II to 1983:IV and 0 elsewhere to control for the Great Moderation.1 Hence, we consider

a model with no dummy variables (Model 1), a model that treats only the Great Moderation as

a known structural break (Model 2), a model that treats only the COVID period as a known

structural break (Model 3), and a model that includes both the Great Moderation and the COVID

period as known structural breaks in the mean (Model 4). The hypothesis testing results for the

number of regimes in all four of these models, both where only changes in the mean or both changes

in the mean and variance are considered. Table 8 presents these results.

Table 8: Results For U.S. GDP Growth Series Hypothesis Tests With Known Breaks

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 3 vs.
H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT
∆µ

Model 1 0.01 0.01 0.01 0.01 0.76 1.00
Model 2 0.01 0.01 0.01 0.01 0.76 1.00
Model 3 0.01 0.01 0.01 0.01 0.94 1.00
Model 4 0.01 0.01 0.01 0.01 0.59 1.00

∆µ & ∆σ
Model 1 0.01 0.01 0.01 0.01 0.44 1.00
Model 2 0.01 0.01 0.01 0.01 0.35 1.00
Model 3 0.01 0.01 0.01 0.01 0.27 1.00
Model 4 0.01 0.01 0.01 0.01 0.24 1.00

Notes: The GDP 1951:II-2024:II series (T = 293) is the GPC1 series from the St. Louis Fed (FRED) website.
Model 1: no fixed exogenous regressors, Model 2: includes dummy variable treating Great Moderation as known
structural break, Model 3: includes dummy variable treating COVID period as known multiple structural breaks,
and Model 4: includes dummy variables treating Great Moderation and COVID period as known multiple
structural breaks. Specifically, the dummy variable for the Great Moderation takes values of 1 for the period
1951:II to 1983:IV, and 0 elsewhere. Similarly, dummy variable for the COVID period takes values of 1 for the
period 2020:I to 2021:IV, and 0 elsewhere. the All MC test results are obtained using N = 99. The MMC-LRT
procedure uses a particle swarm optimization algorithm. Models GDP use p = 1 lags as in Qu and Zhuo (2021).

1. We first fit a Markov switching model with no dummy variable for the Great Moderation and find clear evidence
suggesting this to be one of the regimes. The smoothed probabilities of this model are then used to date this period.
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As with the GNP growth data for the same sample, we find evidence of a model with M = 3

regimes for the US GDP data. Unlike the US GNP models, here we use one lag (p = 1). This

is also the case in Qu and Zhuo (2021). Since our sample is slightly different from theirs, we first

verified that this lag order is still appropriate here and confirmed that this was indeed the case.

To determine which of the eight resulting models is preferred for this sample, we consider an LRT

approach to test the significance of our dummy variables. In this case, the conventional regularity

conditions are met, so we can rely on the conventional procedure. Table A1 reports the estimates

of these models and their log likelihood functions. From here, we can see that both when only the

mean changes and when both the mean and variance change, the log likelihood values of the models

with dummy variables are not significantly different from those of the corresponding model with

no dummy variables, resulting in very small LRT statistics. Hence, it is no surprise that these are

not statistically significant. In all cases, we can also compare the model with changes in both the

mean and variance against the models where only the mean changes. The model that also includes

changes in variance is preferred in all cases. As a result,we find that the model with M = 3 regimes,

changes in mean and variance, and no dummy variables is a sufficiently good model for this data.

The smoothed regime probabilities for this model, as shown in Figure 2, are very similar to the GNP

Figure 2: Smoothed Probabilities of Regimes for US GDP when ∆µ & ∆σ and M = 3
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

case, but the estimates differ slightly (i.e., µ1 = 0.79, µ2 = 0.72, µ3 = −0.50, σ1 = 1.06, σ2 = 0.45,

and σ3 = 6.5). It is worth highlighting that the fact that dummy variables did not change the

outcome of the hypothesis test for the number of regimes is likely because treating these periods as
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known structural breaks in the mean is not sufficient. The Markov switching models with changes

in variance are likely especially preferred here because they consider such changes in variance, which

are likely important features of these known structural changes. Considering more sophisticated

models with heteroskedastic functions or known structural breaks in the variance may prove useful.

In either case, our test proposed here can be used to determine if the models being used capture

such features or if a model with more regimes is needed to do so. It may also be worth noting that,

Figure 3: Smoothed Probabilities of Regimes for US GDP when ∆µ & ∆σ and M = 4
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

as shown in Figure 3, a model with M = 4 regimes can capture the relatively shallower recessions.

In this case, the recovery period following the COVID recession is also included. However, if we

look at the log likelihood of this model in Table A1, it is very close to that of the model with M = 3

regimes, so it is no surprise that this model was rejected. Although not statistically significant,

this model may still be worth considering if the objective is the identification of business cycles.

5.2 Synchronization of business cycles

The synchronization of business cycles has again become a topic of interest after restrictions due

to the global pandemic and supply chain issues highlighted some risks of integration. The busi-

ness cycle literature includes different methodologies to determine the degree of synchronization

of business cycles across various economies. However, few business cycle synchronization hypoth-

esis testing procedures are available. Those that do can sometimes yield mixed results, require

assumptions about the functional form of the relationship, or are not formally shown to be valid
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testing procedures, especially in finite samples. Examples of this include the procedures proposed

in Phillips (1991) and Camacho, Perez-Quiros, and Saiz (2006). Here, we identify business cycles

using Markov switching models, as in the related literature, but propose using the Monte Carlo

likelihood ratio testing procedures introduced here to test the hypothesis of synchronized business

cycles against different alternatives of non-synchronized business cycles. We test the hypothesis

of synchronized business cycles between the United States and Canada, the United Kingdom, or

Germany using real GDP and industrial production data while considering two samples: one from

1985:I to 2019:IV and another from 1985:I to 2022:IV, which notably includes the COVID period.

These economies were considered in Phillips (1991) and here, we also consider seasonally adjusted

data at the quarterly frequency. The application presented here is only meant to showcase the

value of having the LMC-LRT and MMC-LRT procedures, which are useful in multivariate settings

and in cases where m > 1, as we will see, is empirically relevant in this context. Further, we also

observe that the MMC-LRT procedure is valid in finite samples, which is especially important here,

where we use quarterly data and only have sample sizes of T = 140 in the first sample and T = 155

in the second sample.

The general idea is as follows. We propose testing for the synchronization of two business cycles

by identifying the appropriate number of regimes in a bivariate Markov switching VAR model that

includes both economies being considered. Business cycles are defined as intervals of recessions

and expansions, so we should consider a Markov process with at least two regimes. If the business

cycles of both economies in the system are synchronized, we should expect that one Markov process

with two states is sufficient to explain our bivariate data. However, if the business cycles of these

economies are not synchronized, then each requires its own independent Markov process to model

the states of each economy. In the latter case, we can still use a single Markov process, but with

more states to summarize the state of each underlying Markov process. For example, consider the

following bivariate model with economies a and b:

ya,t = µa,sa,t +

p∑
k=1

ϕaa,k

(
ya,t−k − µa,sa,t−k

)
+

p∑
k=1

ϕab,k

(
yb,t−k − µb,sb,t−k

)
+ σa,sa,tϵa,t

yb,t = µb,sb,t +

p∑
k=1

ϕba,k

(
ya,t−k − µa,sa,t−k

)
+

p∑
k=1

ϕbb,k

(
yb,t−k − µb,sb,t−k

)
+ σb,sb,tϵb,t

Here, we are interested in knowing if the Markov processes Sa,t and Sb,t are perfectly dependent

such that Sa,t = Sb,t = St or if they are independent such that Sa,t ̸= Sb,t. If we suppose that
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Sa,t = {1, 2} and Sb,t = {1, 2} then we should consider up to four cases:

S∗
t = 1 if Sa,t = 1 & Sb,t = 1

S∗
t = 2 if Sa,t = 1 & Sb,t = 2

S∗
t = 3 if Sa,t = 2 & Sb,t = 1

S∗
t = 4 if Sa,t = 2 & Sb,t = 2

and if the Markov processes are perfectly dependent, then we have the following two cases

S∗
t = 1 if Sa,t = 1 & Sb,t = 1

S∗
t = 2 if Sa,t = 2 & Sb,t = 2

We can also consider a specific type of dependence where one of the Markov processes, say Sa,t

(Sb,t) is leading (lagging) the other. Here we have the following three cases for example

S∗
t = 1 if Sa,t = 1 & Sb,t = 1

S∗
t = 2 if Sa,t = 2 & Sb,t = 1

S∗
t = 3 if Sa,t = 2 & Sb,t = 2

where alternatively, S∗
t = 2 if Sa,t = 1 and Sb,t = 2. As a result, testing for the synchronization

of business cycles boils down to testing the null hypothesis of a Markov switching model with two

regimes (i.e., business cycles are synchronized) against the alternative hypothesis of three or four

regimes (i.e., not synchronized). That is, we are interested in testing

H0 : M0 = 2 vs.

H1a : M0 +m = 3 or H1b : M0 +m = 4

whereM0 is the number of regimes for a bivariate Markov switching model under the null hypothesis

and M0 +m is the number of regimes under the alternative.

It is worth noting that, even though we presented this in a setting where two economies are

governed by independent Markov processes, the same could be applied in a univariate setting where

we believe the two coefficients—such as the mean and the variance—are governed by independent
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Markov processes (see Sims and Zha (2006) for example).

Table 9: Results For Synchronization of Business Cycle Hypothesis Tests using GDP series

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 2 vs.
H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT
1985:I - 2019:IV (T = 140)

US-CA 0.02 0.04 0.20 0.65 0.17 0.67
US-UK 0.01 0.01 0.01 0.01 0.01 0.01
US-GR 0.03 0.05 0.27 0.54 0.11 0.51

1985:I - 2022:IV (T = 155)
US-CA 0.01 0.01 0.08 0.43 0.03 0.05
US-UK 0.01 0.01 0.13 0.21 0.01 0.01
US-GR 0.01 0.01 0.21 0.53 0.04 0.06

Notes: This table includes results when ∆µ & ∆σ as it is a statistically preferred model over a model where only ∆µ. The GDP
series are OECD Main Economic Indicator Releases obtained from the St. Louis Fed (FRED) website. All MC test results are
obtained using N = 99. The MMC-LRT procedure uses a particle swarm optimization algorithm.

Our results shown in Table 9 suggest that, when considering real GDP data up to 2019:IV

(the pre-COVID period), the US business cycle is perfectly synchronized with that of Canada and

Germany. However, when we include the COVID period, our results suggest that the US business

cycle may no longer synchronized with all three economies. We provide similar results when using

industrial production data in Table A4. Here, the results also suggest that the US is no longer

synchronized with Canada. These findings provide preliminary evidence suggesting that these

economies are no longer synchronized. One possible explanation may be that the recovery following

the COVID period was different for these economies compared to that of the US economy. A more

thorough analysis is presented in Rodriguez-Rondon and Dufour (2024) for interested readers.

6 Conclusion

Using the Monte Carlo procedures described in Dufour (2006) in a likelihood ratio test setting for

Markov switching models, we propose the Maximized Monte Carlo Likelihood Ratio Test (MMC-

LRT) and the Local Monte Carlo Likelihood Ratio Test (LMC-LRT) for Markov switching models.

These tests help determine the number of regimes required to capture nonlinearities in the data,

whether using Markov switching models or Hidden Markov models. Specifically, the tests proposed

here are general enough where they can deal with settings where we are interested in comparing

models with M0 regimes under the null hypothesis against models with M0 +m regimes under the

alternative, where here both M0, m ≥ 1. Notably, the case where m > 1 is one for which other

tests are unavailable. Moreover, these tests can be applied to non-stationary processes, models

with non-Gaussian errors, and even multivariate settings. To the best of our knowledge, we are the
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first to consider hypothesis testing of multivariate Markov switching models. Although we work

with the sample distribution of the test statistic, asymptotic results have not been provided for

LRT in a multivariate setting which brings forward an interesting direction for future research.

Simulations suggest that both versions of the Monte Carlo likelihood ratio test effectively control

the level of the test. Another important contribution is the MMC-LRT, which is an identification-

robust procedure that is valid in finite samples and asymptotically. Finite-sample validity can be

important for many macroeconomic applications where quarterly data are used and being robust to

identification issues is especially important as such issues can often arise when dealing with Markov

switching models. Simulations also show that both tests have good power. When compared to the

moment-based approach of Dufour and Luger (2017) and the parameter stability test of Carrasco,

Hu, and Ploberger (2014) in the M0 = m = 1 setting, where these tests are available, our tests

often exhibit higher power when only the mean changes and comparable or better power when both

the mean and variance change.

Finally, we present two empirical applications. First, we use the proposed test procedures

sequentially to determine the number of regimes for modeling real U.S. GNP and GDP growth

data. For the GNP series from 1951 to 2010, we confirm that a two-regime model fits best, while a

three-regime model is more suitable for the extended sample, ending in 2024:II, for both GNP and

GDP. Our results confirm evidence about the Great Moderation and the return of the low volatility

regime after the Great Recession, as shown by Gadea, Gómez-Loscos, and Pérez-Quirós (2018) and

Gadea, Gómez-Loscos, and Pérez-Quirós (2019). Additionally, we find that the low-volatility regime

also returns after the COVID-19 recession. Although we consider treating these periods as known

structural breaks in the mean, we still find three regimes are needed. We conjecture that treating

them as breaks in the variance may simplify the model, but leave this for future research. In

the second application, we use our test procedures with Markov switching VAR models to test

business cycle synchronization. Preliminary evidence suggests that adding COVID data weakens

the synchronization between the U.S. and Canada that was previously present.
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Appendix

Table A1: Comparison of Models with Dummy Variables for Known Structural Breaks

µ1 µ2 µ3 ϕ1 GMd CVd σ1 σ2 σ3 LogLike AIC BIC
∆µ

Model 1 7.473 0.748 -8.220 0.329 - - 0.819 - - -362.771 753.543 805.017
Model 2 7.473 0.748 -8.220 0.323 0.118 - 0.817 - - -362.032 754.063 809.214
Model 3 7.473 0.748 -8.220 0.329 - 0.084 0.819 - - -362.731 755.461 810.612
Model 4 7.473 0.748 -8.220 0.323 0.125 0.141 0.817 - - -361.919 755.838 814.666

∆µ & ∆σ
Model 1 0.794 0.718 -0.459 0.262 - - 1.07 0.449 6.499 -337.072 706.145 764.973
Model 2 0.795 0.717 -0.463 0.261 0.027 - 1.07 0.450 6.502 -337.020 708.039 770.544
Model 3 0.794 0.717 -0.442 0.260 - 0.185 1.07 0.450 6.437 -337.016 708.033 770.538
Model 4 0.800 0.717 -0.447 0.260 0.022 0.158 1.07 0.451 6.449 -336.984 709.967 776.149

Notes: The GDP 1951:II-2024:II series (T = 293) is the GPC1 series from the St. Louis Fed (FRED) website.
Model 1: no fixed exogenous regressors, Model 2: includes dummy variable treating Great Moderation as known
structural break and is labeled GMd, Model 3: includes dummy variable treating COVID period as known
multiple structural breaks and is labeled CVd, and Model 4: includes dummy variables treating Great
Moderation and COVID period as known multiple structural breaks. Specifically, the dummy variable for the
Great Moderation takes values of 1 for the period 1951:II to 1983:IV, and 0 elsewhere. Similarly, dummy variable
for the COVID period takes values of 1 for the period 2020:I to 2021:IV, and 0 elsewhere. All MC test results are
obtained using N = 99. The MMC-LRT procedure uses a particle swarm optimization algorithm. Models GDP
use p = 1 lags as in Qu and Zhuo (2021).

Table A2: Estimates Models for US GNP series

µ1 µ2 µ3 ϕ1 ϕ2 ϕ3 ϕ4 σ1 σ2 σ3 p11 p12 p13 p21 p22 p23 p31 p32 p33 LogLike
M=1 1.51 - - 0.14 0.18 0.03 0.02 1.19 - - - - - - - - - - - -458.38
M=2 1.56 1.21 - 0.31 0.24 0.01 0.00 0.62 3.03 - 0.96 0.04 - 0.32 0.68 - - - - -363.79
M=3 1.87 1.31 -0.77 0.23 0.23 0.06 0.00 1.09 0.49 5.74 0.99 0.01 0.00 0.00 0.99 0.01 0.00 0.37 0.63 -341.57

Notes: The GNP 1951:II-2024:II series (T = 293) is the GNP series from the St. Louis Fed (FRED) website.
The models use p = 4 lags as in Hamilton (1989), Hansen (1992), Carrasco, Hu, and Ploberger (2014), and
Dufour and Luger (2017).

Table A3: Estimates of Preferred Models for US GDP series

µ1 µ2 µ3 ϕ1 σ1 σ2 σ3 p11 p12 p13 p21 p22 p23 p31 p32 p33 LogLike
M=1 0.74 - - 0.10 1.09 - - - - - - - - - - - -437.54
M=2 0.80 0.11 - 0.30 0.68 3.00 - 0.96 0.04 - 0.47 0.53 - - - - -368.08
M=3 0.79 0.72 -0.46 0.26 1.06 0.45 6.50 0.97 0.03 0.00 0.01 0.98 0.01 0.32 0.00 0.68 -337.07

Notes: The GDP 1951:II-2024:II series (T = 293) is the GPC1 series from the St. Louis Fed (FRED) website.
The models use p = 1 lags as in Qu and Zhuo (2021).
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Figure A1: Smoothed Probabilities of Regimes for US GNP when ∆µ only and M = 2

1960 1980 2000 2020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Date

P
er

ce
nt

 (
%

)

Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

Figure A2: Smoothed Probabilities of Regimes for US GNP when ∆µ & ∆σ and M = 2
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.
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Figure A3: Smoothed Probabilities of Regimes for US GNP when ∆µ only and M = 3
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

Figure A4: Smoothed Probabilities of Regimes for US GDP when ∆µ only and M = 2
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.
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Figure A5: Smoothed Probabilities of Regimes for US GDP when ∆µ & ∆σ and M = 2
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.

Figure A6: Smoothed Probabilities of Regimes for US GDP when ∆µ only and M = 3
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Notes: The sample is from 1951:III to 2024:II. The shaded areas correspond to the NBER recessions.
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Table A4: Results For Synchronization of Business Cycle Hypothesis Tests using IP series

Series
H0 : M = 1 vs. H0 : M = 2 vs. H0 : M = 2 vs.
H1 : M = 2 H1 : M = 3 H1 : M = 4

LMC-LRT MMC-LRT LMC-LRT MMC-LRT LMC-LRT MMC-LRT
1985:I - 2019:IV (T = 140)

US-CA 0.01 0.01 0.19 0.73 0.23 0.65
US-UK 0.01 0.01 0.18 0.61 0.21 0.68
US-GR 0.01 0.01 0.58 1.00 0.76 1.00

1985:I - 2022:IV (T = 155)
US-CA 0.01 0.01 0.05 0.05 0.03 0.04
US-UK 0.01 0.01 0.18 0.48 0.12 0.37
US-GR 0.01 0.01 0.19 0.51 0.14 0.44

Notes: This table includes results when ∆µ & ∆σ as it is a statistically preferred model over a model where only
∆µ. The IP series are OECD Main Economic Indicator Releases obtained from the St. Louis Fed (FRED)
website. All MC test results are obtained using N = 99. The MMC-LRT procedure uses a particle swarm
optimization algorithm.
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