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Abstract

Markov switching models have wide applications in economics, finance, and other fields. Most

studies focusing on identifying the number of regimes in a Markov switching model have been lim-

ited to testing the null hypothesis of only one regime (i.e., a linear model with no switching) against

an alternative hypothesis with two regimes. Even in such simple cases, this type of problem raises

issues of nonstandard asymptotic distributions, identification failure, and nuisance parameters. In

this paper, we propose Monte Carlo test methods [Dufour (2006)] which deal transparently with

these distributional issues, even allowing for finite-sample inference. The procedure is applied to

likelihood ratio statistics. The tests circumvent the issues plaguing conventional hypothesis testing.

This also allows one to deal with non-stationary processes, models with non-Gaussian errors and

multivariate settings, which have received little attention in the literature. An important contribu-

tion of this paper is the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT), which is an

identifications-robust valid test procedure both in finite samples and asymptotically. Further, the

methods proposed are applicable to more general settings where a null hypothesis with M0 regimes

is tested against an alternative with M0 + m regimes where both M0 ≥ 1 and m ≥ 1. This allows

one to compare different Markov switching models and Hidden Markov Models. Simulation results

suggest the proposed tests are able to control the level of the test and have good power.

Key Words: Hypothesis testing, Monte Carlo tests, Likelihood ratio, Markov switching, Hidden

Markov Model, Nonlinearity, Regimes

1. Introduction

Markov-switching models (MSM) were first introduced by Goldfeld and Quandt (1973)

and later popularized by Hamilton (1989) as an alternative approach to modelling U.S.

GNP growth. These models allow one to treat a series as a nonlinear process where the

nonlinearity arises from discrete shifts. The process before and after a shift can be de-

scribed as two separate regimes, and Hamilton (1989) describes these regimes as episodes

where the behavior of the series is significantly different. Using U.S. GNP growth as an ex-

ample, one regime can characterize a period of positive growth, while the other represents

a period of negative growth due to recessions. Due to this flexibility, they have since been

widely used in macroeconomics and finance. For example, MSMs have been applied to the

identification of business cycles [Chauvet, 1998; Chauvet and Hamilton, 2006; Chauvet

et al., 2002; Diebold and Rudebusch, 1996; Hamilton, 1989; Kim and Nelson, 1999; Qin

and Qu, 2021], interest rate dynamics (Garcia and Perron, 1996), financial markets (Mar-

cucci, 2005), conditional heteroskedasticity models [Augustyniak, 2014; Gray, 1996; Haas

et al., 2004; Hamilton and Susmel, 1994; Klaassen, 2002], conditional correlations (Pel-

letier, 2006) and identification of structural VAR models [Herwartz and Lütkepohl, 2014;

Lanne et al., 2010; Lütkepohl et al., 2021] to name a few. More complete surveys of this
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literature include Hamilton (2010), Hamilton (2016) and Ang and Timmermann (2012).

Applications of MSMs outside of the macroeconomic and financial literature include: en-

vironmental and energy economics [Cevik et al., 2021; Charfeddine, 2017; Chevallier,

2011], industrial organization (Resende, 2008), health economics (Anser et al., 2021) and

many others. An alternative but related model is the Hidden Markov Model (HMM). Like

MSMs, HMMs are used to describe a process Yt which depends on a latent Markov pro-

cess St. However, HMMs depend only on St, which takes discrete values {1, . . . , M}
where M is the number of regimes. In contrast, as described by An et al. (2013), when

the process Yt also depends on lags of Yt (e.g., {Yt−1, . . . , Yt−p}), it is called a Hidden

Markov-switching model, or simply a Markov-switching model. The dependence on past

observations allows for more general interactions between Yt and St, which can be used to

model more complicated causal links between economic or financial variables of interest,

so that MSMs are a generalization of the basic HMM. However, it is worth noting that

HMMs have many applications including computational molecular biology [Baldi et al.,

1994; Krogh et al., 1994], handwriting and speech recognition [Jelinek, 1997; Nag et al.,

1986; L. Rabiner and Juang, 1986; L. R. Rabiner and Juang, 1993], computer vision and

pattern recognition (Bunke and Caelli, 2001), and other machine learning applications.

An important issue with MSMs and HMMs is that the number of states or regimes

must be determined a priori. Since the number of regimes is not always known, it is of

interest to test the fit of a given model with a certain number of regimes (e.g., M0 regimes),

against an alternative model with a different number of regimes (e.g., M0 + m regimes).

This highlights the importance of valid test procedures to determine the number of regimes

in these types of models. However, standard hypothesis testing techniques are not easily

applicable in this setting, because certain parameters of the model are unidentified under

the null hypothesis, and usual regularity conditions needed to derive the asymptotic dis-

tribution of test statistics are not satisfied. The study of the asymptotic distribution of the

likelihood ratio test for MSMs is a problem that has received a lot of attention [see Carter

and Steigerwald, 2012; Cho and White, 2007; Garcia, 1998; Hansen, 1992; Kasahara and

Shimotsu, 2018; Qu and Zhuo, 2021]. Most procedures focusing on the likelihood ratio test

approach currently available are only able to deal with settings where the null hypothesis

is that of a linear model (i.e., H0 : M0 = 1) and the alternative hypothesis is a MSM with

two regimes (i.e., H1 : M0 + m = 2, where M0 = m = 1). The exception is Kasahara and

Shimotsu (2018) which study the asymptotic distribution of the likelihood ratio test statistic

when the null hypothesis is of a model with M0 regimes and the alternative hypothesis is

that of a model with M0 + 1 regimes where M0 ≥ 1 (and m = 1). Interestingly, in this

setting, the authors establish the asymptotic validity of the parametric bootstrap procedure

(see Proposition 21 of Kasahara and Shimotsu, 2018). Qu and Zhuo (2021) also show the

asymptotic validity of the parametric bootstrap for specific data generating processes in

the more simple setting where we would like to compare a linear model to a MSM with

two regimes. At the same time, others have proposed alternative test procedures based on

moments of least-squares residuals (see Dufour and Luger, 2017), parameter stability (see

Carrasco et al., 2014), or other moment-matching conditions (see Antoine et al., 2022).

In Carrasco et al. (2014), the authors are interested in the case of testing a linear model

against a MSM with only two regimes. This is because, as a test of parameter stability,

the null hypothesis must always be that of a linear model and in this case the test only

has good power against local alternatives. As a result, this test cannot be used to compare

different general MSMs (with M0 > 1). Other limitations of the test procedures men-

tioned so far (with the exception of those proposed in Dufour and Luger (2017)) is that

they are aimed at establishing an asymptotic distribution of the test statistic, so they de-

pend on assumptions needed to obtain asymptotic results which may be restrictive in many
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cases. For example, a common assumption is that the process studied is stationary with

Gaussian errors. Within the likelihood ratio test literature, it is also common to assume a

concentrated parameter space, in order to avoid the parameter boundary problem. On the

other hand, Dufour and Luger (2017) propose a valid test for the null hypothesis of a linear

model against an alternative of a MSM with two regimes, which relies on Monte Carlo test

techniques. Specifically, the authors propose four test statistics based on the moments of

the least-squares residuals, which are meant to capture different characteristics of a two-

component mixture distribution. Approximate marginal p-values are computed for each

moment specific test statistic and are combined using either the minimum or the product.

This leads to a single test statistic that is free of nuisance parameters when there are no au-

toregressive lags in the model (i.e., HMMs). When autoregressive lags are included in the

model, the test procedure is no longer free of nuisance parameters. In this case, the authors

use the Local Monte Carlo (LMC) and Maximized Monte Carlo (MMC) test procedure

described in Dufour (2006).

In this paper, we also use the Monte Carlo procedures described in Dufour (2006) to

deal with the issues plaguing conventional testing procedures discussed so far, but in a

likelihood ratio test setting. This also allows us to deal with nuisance parameters in the

distribution of the likelihood ratio test statistic. Specifically, we propose the Local Monte

Carlo Likelihood Ratio Test (LMC-LRT) and the Maximized Monte Carlo Likelihood Ratio

Test (MMC-LRT), which can be used to identify the number of regimes in both MSMs and

HMMs in the more general case where we would like to compare models with M0 regimes

under the null hypothesis against models with M0+m regimes under the alternative, where

here both M0 ≥ 1 and m ≥ 1. Since MSMs are more general than HMMs in the sense

that we can recover a HMM by simply setting the number of autoregressive lags to zero,

we focus on MSMs throughout this study but the results of the tests proposed here are also

applicable to HMMs. An important contribution of the MMC-LRT proposed here is that

it is an exact test for determining the number of regimes in a MSM and is valid both in

finite samples and asymptotically. Further, since we are not working with the asymptotic

distribution of the test statistic, we can also relax some of the assumptions typically required

to obtain asymptotic results. There are four main advantages of using such a framework.

The first is that the violation of the regularity conditions needed to drive an asymptotic

distribution are no longer problematic. This means that we can consider the full nuisance

parameter space rather than a concentrated parameter space as in Qu and Zhuo (2021) and

Kasahara and Shimotsu (2018). The second advantage is that this allows us to determine the

appropriate number of regimes even when dealing with a non-stationary process Yt. The

third advantage is that we can deal with cases where the asymptotic distribution is more

complicated to obtain or even infeasible, such as specific cases where the errors are non-

Gaussian. Finally, the fourth advantage is that LMC-LRT and MMC-LRT can be applied to

multivariate settings (e.g., Markov-switching VAR models or multivariate HMM). It is also

worth noting that non-stationary processes, non-Gaussian errors and multivariate settings

have not received a lot of attention in the literature on hypothesis testing for the number

of regimes in MSMs. Simulation results indicate that both the LMC-LRT and MMC-LRT

procedures presented here are able to control the probability of a type I error as suggested

by the theory proposed in Dufour (2006), and have better power than other test proposed in

the literature and considered here for comparison. Another noteworthy contributions of this

paper includes tabulating results of the test proposed by Dufour and Luger (2017) when the

process Yt is non-stationary. Further simulation results with more complicated DGPs and

an empirical application using U.S. GNP growth can also be found in Rodriguez Rondon

and Dufour (2022a). All tests results presented in this paper and in Rodriguez Rondon and

Dufour (2022a) are obtained using the R package MSTest described in a companion paper
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Rodriguez Rondon and Dufour (2022b).

The next sections are structured as follows. Section 2 reviews the Markov-switching

autoregressive model we are interested in and briefly discusses estimation procedures. In

section 3, we introduce and discuss the MMC-LRT and LMC-LRT proposed in this paper.

Section 4 provides simulation results for the size and power of the proposed testing proce-

dures and compares them to those of other tests proposed in the literature. Finally, section

5 provides concluding remarks.

2. Markov switching

In general, a MSM can be expressed as

yt = xtβ + ztδst + σstǫt . (1)

In a univariate setting, yt is a scalar, xt is a fixed (or predetermined) 1×n vector of variables

whose coefficients do not depend on the latent Markov process St, zt is an 1 × ν vector of

variables whose coefficient depend on the Markov process St, and ǫt is an error process,

which for example may follow a N (0, 1) distribution, and σst a standard deviation which

may also depend on the Markov process St or remain constant throughout (i.e., σ). For our

testing procedures, other distributions on the error processes may be considered, but for

simplicity we assume a normal distribution. Similarly, in a multivariate setting, we could

allow yt to be a 1 × q vector [i.e., yt = (y1,t, . . . , yq,t)] and ǫt also a 1 × q vector, which

may be distributed as N (0,Σst) or N (0,Σ) [if the variance-covariance matrix does not

depend on the latent Markov process St].

In order to have an autoregressive MSM, as described above, lags of yt are included

in either xt or zt depending on whether we want to allow the autoregressive coefficients to

depend on the regimes. This general setting also allows one to consider a trend function

within xt or zt. A HMM can also be recovered by considering only a constant term in zt

and excluding xt. For the sake of exposition, in the following we consider a MSM where

only the mean and the variance may be subject to change and autoregressive coefficient

remain constant. That is, xt = (yt−1, . . . , yt−p) and zt = 1. We also reformulate the

model to make the dependence on the mean µst
more explicit. This leads to the following

model:

yt = µst
+

p
∑

k=1

φk(yt−k − µst−k
) + σstǫt (2)

where we can see that the mean and variance of the observed process yt are governed by

the latent Markov chain process St. As described in Hamilton (1994), for a model with M

regimes, the one-step transition probabilities can be gathered into a transition matrix such

as

P =







p11 . . . pM1
...

. . .
...

p1M . . . pMM






(3)

where for example pij = P (St = j |St−1 = i) is the probability that state i switches to

state j. For example, if we consider a model with only two regimes, we only need a 2 × 2
transition matrix to summarize the transition probabilities P:

P =

[

p11 p21

p12 p22

]

(4)
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In either case, the columns of the transition matrix must sum to one in order to have a

well defined transition matrix (i.e.,
∑M

j=1 = pij = 1). We can also obtain the ergodic

probabilities, π = (π1, π2)
′, which are given by

π1 =
1 − p22

2 − p11 − p22
, π2 = 1 − π1 , (5)

in a setting with two regimes or, more generally, for any number of M regimes we could

use

πππ = (A′
A)−1

A
′
eN+1 , A =

[

IM − P

111′

]

, (6)

where eM+1 is the (M + 1)-th column of IM+1.

Continuing with the example of a MSM such as the one given by (2) with St = {1, 2}
[i.e., M = 2 regimes], the log-likelihood conditional on the first p observations of yt is

given by

LT (θ) = log f(yT
1 | y0

−p+1; θ) =
T

∑

t=1

log f(yt | yt−1
−p+1; θ) (7)

where θ = (µ1, µ2, σ1, σ2, φ1, . . . , φp, p11, p22)
′ and

f(yt | yt−1
−p+1; θ) =

2
∑

st=1

2
∑

st−1=1

· · ·
2

∑

st−p=1

f(yt, St = st, St−1 = st−1, . . . , St−p = st−p | yt−1
−p+1; θ) .

(8)

Under Gaussianity, we have:

f(yt, St = st, . . . , St−p = st−p | yt−1
−p+1; θ) =

P(S∗

t = s∗t | yt−1
−p+1; θ)

√

2πσ2
st

× exp

{

−[yt − µst
− ∑p

k=1 φk(yt−k − µst−k
)]2

2σ2
st

} (9)

where

S∗

t = s∗t if St = st, St−1 = st−1, . . . , St−p = st−p (10)

and P(S∗

t = s∗t | yt−1
−p+1; θ) is the probability that this occurs.

Typically, MSMs are estimated using the Expectation Maximization (EM) algorithm

(see Dempster et al., 1977), Bayesian methods or through the use of the Kalman filter (using

the state-space representation of the model). In very simple cases, MSMs can be estimated

using Maximum Likelihood Estimation (MLE). However, since the Markov process St is

latent and more importantly the likelihood function can have several modes of equal height

in addition to other unusual features that can complicate estimation by MLE this is not often

used. In this study, we use the EM algorithm when estimating MSMs. It is worth noting

that, in practice, empirical estimates can sometimes be improved by using the results of

the EM algorithm as initial values in a Newton-type of optimization algorithm. This two-

step estimation procedure is used to obtain results presented in the empirical section of

this paper. We omit a detailed explanation of the EM algorithm as our focus is on the

hypothesis testing procedures proposed here. For the interested reader, the estimation of a

Markov switching model via the EM algorithm is describe in detail in Hamilton (1990) and

Krolzig (1997).
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3. Monte Carlo likelihood ratio tests

In this section, we introduce the Maximized Monte Carlo likelihood ratio test (MMC-LRT)

and the Local Monte Carlo likelihood ratio test (LMC-LRT) obtained assuming normally

distributed errors and a model of the form (2). For simplicity, we use an example where

we are interested by a null hypothesis of linear model (i.e., only M0 = 1 regime) and an

alternative hypothesis of M0 +m = 2 regimes. However, it is easy to see this methodology

can be extended to more general cases with M0 ≥ 1 and m ≥ 1. As in Garcia (1998)

and the parametric bootstrap procedure describe in Qu and Zhuo (2021) and Kasahara and

Shimotsu (2018), we assume that the null hypothesis depends only on the mean, variance

and autoregressive coefficients.

The LRT approach requires that we estimate the model both under the null and al-

ternative hypothesis, so that we can obtain the log-likelihoods for each model. The log-

likelihood for the model under the alternative (and under the null hypothesis if M0 > 1) is

given by (7) - (9):

LT (θ1) = log f(yT
1 | y0

−p+1; θ1) =
T

∑

t=1

log f(yt | yt−1
−p+1; θ1) (11)

where

θ1 = (µ1, µ2, σ1, σ2, φ1, . . . , φp, p11, p22)
′ ∈ Ω . (12)

The subscript of 1 underscores the fact that θ1 is the parameter vector under the alternative

hypothesis. The set Ω satisfies any theoretical restrictions we may wish to impose on

θ1 [such as σ1 > 0 and σ2 > 0]. On the other hand, the log-likelihood under the null

hypothesis (M0 = 1) is given by

L0
T (θ0) = log f(yT

1 | y0
−p+1; θ0) =

T
∑

t=1

log f(yt | yt−1
−p+1; θ0) (13)

where

f(yt | yt−1
−p+1; θ0) =

1√
2πσ2

exp

{−[yt − µ − ∑p
k=1 φk(yt−k − µ)]2

2σ2

}

, (14)

θ0 = (µ, σ2, φ1, . . . , φp)
′ ∈ Ω̄0. (15)

Note that Ω̄0 has lower dimension than Ω. The null and alternative hypotheses can be

written as:

H0 : δ1 = δ2 = δ for some unknown δ = (µ, σ) , (16)

H1 : (δ1, δ2) = (δ∗1, δ∗2) for some unknown δ∗1 6= δ∗2 , (17)

where δ1 = (µ1, σ1) and δ2 = (µ2, σ2). Clearly, H0 is a restricted version of H1: for each

θ0 ∈ Ω̄0, we can find θ1 such that

L0
T (θ0) = LT (θ1) , θ1 ∈ Ω0, (18)

where Ω0 is the subset of vectors θ1 ∈ Ω such that θ1 satisfies H0. Under H0, the vector

θ0 ∈ Ω̄0 is a nuisance parameter: the null distribution of any test statistic for H0 depends

on θ0 ∈ Ω̄0. In this problem, the null distribution of the test statistic is in fact completely

determined by θ0.

The likelihood ratio statistic for testing H0 against H1 can then written as

LRT = 2[L̄T (H1) − L̄T (H0)] (19)
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where

L̄T (H1) = sup{LT (θ1) : θ1 ∈ Ω} , (20)

L̄T (H0) = sup{L0
T (θ0) : θ0 ∈ Ω̄0} = sup{LT (θ1) : θ1 ∈ Ω0} . (21)

The null distribution of LRT depends on the parameter θ0 ∈ Ω̄0. Since the model is

parametric, we can generate a vector N i.i.d replications of LRT for any given value of

θ0 ∈ Ω̄0:

LR(N, θ0) := [LR
(1)
T (θ0), . . . , LR

(N)
T (θ0)]

′, θ0 ∈ Ω̄0 . (22)

Let us denote LR
(0)
T := LRT the test statistic based in the observed data. Given the model

considered, we can assume [as in (4.10) of Dufour (2006)] that:

the random variables LR
(0)
T , LR

(1)
T (θ0), . . . , LR

(N)
T (θ0) are exchangeable for some

θ0 ∈ Ω̄0, each with distribution function F [x | θ0] . (23)

Set

F̂N [x | θ0] := F̂N [x; LR(N, θ0)] =
1

N

N
∑

i=1

I[LR
(i)
T (θ0) ≤ x] (24)

ĜN [x | θ0] := ĜN [x; LR(N, θ0)] = 1 − F̂N [x; LR(N, θ0)] (25)

where I(C) := 1 if condition C holds, and I(C) = 0 otherwise. F̂N [x | θ0] is the sample

distribution of the simulated statistics, and ĜN [x | θ0] is the corresponding survival func-

tion. Then, the Monte Carlo p-value is given by

p̂N [x | θ0] =
NĜN [x | θ0] + 1

N + 1
. (26)

Alternatively, using the relationship

RLR[LR
(0)
T ; N ] = NF̂N [x; LR(N, θ0)]

=
N

∑

i=1

I[LR0
T ≥ LRi

T (θ0)] (27)

we can define a Monte Carlo p-value as

p̂N [x | θ0] =
N + 1 − RLR[LR

(0)
T ; N ]

N + 1
(28)

where, as can be seen from (27), RLR[LR
(0)
T ;N ] simply computes the rank of the test

statistic using the observed data within the generated series LR(N, θ0). As discussed in

Dufour (2006), a critical region with level α is then given by

sup
θ0∈Ω̄0

p̂N [LR
(0)
T | θ0] ≤ α (29)

More precisely, if (N + 1)α is an integer, we have

P

[

sup{p̂N [LR
(0)
T | θ0] : θ0 ∈ Ω̄0} ≤ α

]

≤ α (30)

under the null hypothesis: we get a valid test with level α for H0; see Proposition 4.1 in

Dufour (2006). In the present case, we call this procedure the Maximized Monte Carlo

Likelihood Ratio Test (MMC-LRT).
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The parameter space, however, can be very large. Specifically, it grows as the number of

autoregressive components increases and as the number of regimes increases. Additionally,

the solution may not be unique in the sense that the maximum p-value may be obtained by

more than one parameter vector. For this reason, numerical optimization methods that

do not depend on the use of derivatives are recommended to find the maximum Monte

Carlo p-value within the nuisance parameter space. Such algorithms include: Generalized

Simulated Annealing, Genetic Algorithms, and Particle Swarm [see Dufour, 2006; Dufour

and Neves, 2019].

In order to facilitate optimization [as described in Dufour (2006)], it is also possible

to search within a smaller consistent set of the parameter space CT . A consistent set can

be defined using the consistent point estimate. For example, let θ̂0 be the consistent point

estimate of θ0. Then, we can define

CT = {θ0 ∈ Ω̄0 : ‖ θ̂0 − θ0 ‖ < c} (31)

where c is a fixed positive constant that does not depend on T and ‖·‖ is the Euclidean

norm in R
k. An empirically interesting consistent set that we consider in this study is

C∗

T = CCI
T ∪ Cǫ

T where

CCI
T = {θ0 ∈ Ω̄0 : ‖ θ̂0 − θ0 ‖ < 2 × S.E.(θ̂0)} (32)

Cǫ
T = {θ0 ∈ Ω̄0 : ‖ θ̂0 − θ0 ‖ < ǫ} (33)

CCI
T is defined by a 95% confidence interval of the consistent point estimates, while Cǫ

T

is defined using a fixed constant ǫ that does not depend on T . The union of these two sets

allows us to consider values that may be outside the confidence interval of the autoregres-

sive parameters and the transition probabilities, depending on the choice of ǫ, while also

constraining the values considered for the mean and the variances to a reasonable region.

Finally, we can also define CT to be the singleton set CT = {θ̂0}, which gives us the

Local Monte Carlo Likelihood Ratio Test (LMC-LRT). Here, the consistent set includes

only the consistent point estimate θ̂0. Generic conditions for the asymptotic validity of such

a test are discussed in section 5 of Dufour (2006), but these are more restrictive than those

for the MMC-LRT procedure. The LMC test can be interpreted as the finite-sample ana-

logue of the parametric bootstrap. To reflect this, we replace F̂N [x | θ0] with F̂TN [x | θ0] =
F̂N [x;LRT (N, θ0)] and ĜN [x | θ0] with ĜTN [x | θ0] = ĜN [x;LRT (N, θ0)] where the

subscript T is meant to allow the test statistics and functions to change based on increasing

sample sizes. As a result, the Monte Carlo p-value is given by

p̂TN [x | θ0] =
NĜTN [x | θ0] + 1

N + 1
(34)

The asymptotic validity in this case refers to the estimate θ̂0 converging asymptotically to

the true parameters in θ0 as the sample size increases. This is not related to the asymptotic

validity of the critical values as desired in Hansen (1992), Garcia (1998), Cho and White

(2007), Qu and Zhuo (2021) and Kasahara and Shimotsu (2018). Specifically, like the para-

metric bootstrap, the LMC procedure is only valid asymptotically as T → ∞ but, unlike

the parametric bootstrap, we do not need a large number of simulations (i.e., N → ∞),

since we do not try to approximate the asymptotic critical values nor assume that the distri-

bution of the test statistic converges asymptotically but rather work with the critical values

from the sample distribution F̂ [x | θ0]. This allows the procedure to be computationally ef-

ficient in the sense that we will not need to perform a large number of simulations with the

aim of obtaining asymptotically valid critical values. In fact, as can be seen from equations
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Table 1: Empirical size of test when H0 : M0 = 1 and H1 : M0 + m = 2

φ = 0.1 φ = 0.9 φ = 1.0
Tests T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

LMC-LRT 5.8 5.3 4.9 4.8 4.9 4.9

MMC-LRT 0.4 0.5 0.9 0.9 0.9 0.6

LMCmin 4.4 5.9 4.7 4.7 4.2 4.8

LMCprod 5.3 5.2 4.9 5.1 4.9 4.3

MMCmin 0.2 0.2 0.2 0.7 0.2 0.0

MMCprod 0.1 0.2 0.4 0.8 0.2 0.5

supTS 4.8 5.1 6.0 4.5 - -

expTS 6.8 6.2 5.4 6.9 - -

(28) and (34), the number of replications N is taken into account in the calculation of the

p-value both in the numerator and the denominator so that it essentially remains fixed as N

increases. As discussed in Dufour (2006), building a test with level α = 0.05 requires as

few as 19 replications but using more replications can increase the power of the test. For

this reason, in our simulations results we use N = 99 for our Monte Carlo procedure as in

Dufour and Khalaf (2001) and Dufour and Luger (2017) though it is also possible to use the

procedure described in Davidson and MacKinnon (2000) to determine the optimal number

of simulations to minimize experimental randomness and loss of power.

4. Simulation evidence

Here, we present tables summarizing the empirical size and power (in percentage) of the

two tests proposed in this paper, the LMC-LRT and MMC-LRT. We also present results

for the moment-based test of Dufour and Luger (2017) and the parameter stability test

of Carrasco et al. (2014) for comparison. In what follows, the nominal level is set to be

α = 0.05 and results are based on 1000 replications of the data generating process (DGP).

Throughout, we will consider a simple AR(1) model given by

yt = µst
+ φ1(yt−1 − µst−1

) + σstǫt (35)

where ǫt ∼ N (0, 1), such that only the mean and variance are governed by the Markov

process St. It is understood that the LMC-LRT, supTS, and expTS procedures should per-

form better in large sample sizes since they are asymptotic tests. However, many economic

applications using quarterly observations are limited to as few as 100 to 200 observations

so in the following we consider these sample sizes to get an idea of the finite sample perfor-

mance of these tests. Also, whenever considering a Maximized Monte Carlo test, we use

the set C∗

T = CCI
T ∪ C0.1

T . All results presented here can be obtained using the R-package

MSTest described in the companion paper Rodriguez Rondon and Dufour (2022b).

Table 1 reports the empirical size of the tests when φ = 0.1 in the first two columns,

when φ = 0.9 in the next two columns, and when φ = 1.0 in the last two columns. For

each value of φ we consider a sample size of T = 100 or T = 200. As suggested by the

theory laid out in Dufour (2006), the maximized Monte Carlo tests has empirical rejection

frequencies ≤ 5% under the null hypothesis. The LMC-LRT, LMCmin, and LMCprod, also

appear perform very well with a rejection frequency of approximately 5% even in finite

samples. The simulation results for the supTS and expTS show that these tests also appear
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Table 2: Empirical power of test when H0 : M0 = 1 and H1 : M0 + m = 2 and

(p11, p22) = (0.9, 0.9)

φ = 0.1 φ = 0.9 φ = 1.0
Tests T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

∆µ = 2, ∆σ = 0
LMC-LRT 48.7 81.2 19.5 33.8 12.5 15.8

MMC-LRT 30.6 51.0 4.6 8.4 4.6 2.4

LMCmin 3.8 5.8 14.6 21.3 18.8 28.5

LMCprod 4.1 5.9 15.2 24.2 19.6 30.8

MMCmin 0.0 0.1 2.8 4.1 1.9 5.0

MMCprod 0.1 0.1 1.9 4.0 2.3 5.2

supTS 24.3 49.9 8.4 12.5 - -

expTS 15.6 25.4 21.7 32.6 - -

∆µ = 0, ∆σ = 1
LMC-LRT 66.6 93.4 67.0 94.5 67.2 94.6

MMC-LRT 39.4 69.6 35.6 73.0 31.7 64.7

LMCmin 36.5 64.7 42.5 64.9 39.6 64.4

LMCprod 40.6 66.8 43.3 69.1 42.5 65.3

MMCmin 9.0 30.2 11.2 27.8 10.4 16.3

MMCprod 10.7 31.4 10.8 31.0 7.9 18.0

supTS 32.4 58.0 32.2 67.4 - -

expTS 40.1 62.6 54.1 84.7 - -

∆µ = 2, ∆σ = 1
LMC-LRT 83.7 99.4 45.3 77.2 29.5 43.9

MMC-LRT 60.3 90.1 24.0 52.0 14.0 29.5

LMCmin 51.9 81.6 39.9 62.3 35.4 57.7

LMCprod 45.9 74.2 42.5 65.1 38.1 60.9

MMCmin 10.5 39.0 10.2 24.0 8.8 13.7

MMCprod 14.3 37.9 11.8 29.6 9.0 18.1

supTS 72.7 96.2 34.6 62.9 - -

expTS 75.6 97.0 53.9 77.9 - -

to control the empirical size well but less so than the Monte Carlo based tests as they have

a small degree of over-rejection in some cases. This however, should be expected given the

small sample sizes.

Table 2 and 3 report the empirical power of the tests when the underlying DGP is a

MSM with two regimes. We consider the same values for φ and T as in Table 1 but in

Table 2 the transition probabilities are (p11, p22) = (0.9, 0.9) resulting in πππ = (0.5, 0.5)
while in Table 3 the transition probabilities are (p11, p22) = (0.90, 0.50) so that πππ =
(0.83, 0.17). The first case corresponds to having spent, on average in the long run, the

same amount of time in both regimes whereas the latter case suggests, on average in the

long run, more time is spent in the first regime over the entire sample. The first panel in each

table corresponds to a DGP where only the mean changes, the second panel a DGP where

only the variance changes and the third bottom panel a DGP where both the mean and the

variance are different across regimes. As can be seen from these tables, power is lowest

when only the mean is subject to change for all tests. The LMCmin, LMCprod, MMCmin,
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Table 3: Empirical power of test when H0 : M0 = 1 and H1 : M0 + m = 2 and

(p11, p22) = (0.9, 0.5)

φ = 0.1 φ = 0.9 φ = 1.0
Tests T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

∆µ = 2, ∆σ = 0
LMC-LRT 34.0 72.3 27.4 48.3 20.8 24.5

MMC-LRT 20.3 41.0 7.1 16.9 4.4 8.1

LMCmin 14.8 29.9 13.5 21.8 16.3 28.4

LMCprod 11.9 22.4 15.0 23.4 16.9 29.0

MMCmin 1.0 3.7 1.4 2.6 1.6 2.1

MMCprod 1.8 3.3 1.2 3.8 1.6 3.6

supTS 23.8 47.0 11.9 18.2 - -

expTS 24.6 47.1 22.1 33.5 - -

∆µ = 0, ∆σ = 1
LMC-LRT 55.7 88.7 61.6 88.4 58.4 89.9

MMC-LRT 36.4 69.4 30.7 60.8 29.2 54.5

LMCmin 48.7 69.4 49.4 72.0 45.6 74.4

LMCprod 48.8 70.7 49.5 71.6 47.8 73.2

MMCmin 20.5 44.4 19.7 49.2 16.6 34.3

MMCprod 20.3 42.6 18.8 44.5 16.2 31.2

supTS 29.9 46.4 30.0 50.3 - -

expTS 43.9 68.3 52.8 78.6 - -

∆µ = 2, ∆σ = 1
LMC-LRT 83.4 99.4 60.2 88.1 53.1 67.4

MMC-LRT 66.2 91.6 41.5 74.5 29.7 53.7

LMCmin 84.1 99.0 65.9 89.4 63.7 88.2

LMCprod 83.7 99.2 68.5 91.6 63.9 89.9

MMCmin 47.3 50.3 28.1 49.8 23.4 46.7

MMCprod 48.3 44.6 34.9 43.6 28.3 42.1

supTS 80.8 96.9 53.2 79.8 - -

expTS 86.6 99.4 75.1 94.7 - -
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and MMCprod procedures have the lowest power when only the mean is subject to change.

The LMC-LRT procedure proposed here on the other hand has comparable power to the

supTS and expTS tests and in many cases even performs better. When the variance is

subject to change, all tests have higher power. The LMC-LRT test proposed here appears

to have the highest power in most cases when the variance is subject to change, with the

supTS and expTS tests having comparable results in some cases. Given that the MMC-LRT

procedure considers a wider set of nuisance parameter values in comparison to the LMC-

LRT procedure, the power of the MMC-LRT is lower than that of the LMC-LRT in all

cases. The same is true when comparing the MMCmin, and MMCprod power results to those

of LMCmin and LMCprod and this should be expected. However, we find that for the set

C∗

T , the power of the MMC-LRT procedure proposed here is quite good and in some cases

even outperforms the LMCmin and LMCprod procedures when only the mean is subject to

change.

In Rodriguez Rondon and Dufour (2022a) we further demonstrate the use and perfor-

mance of the LMC-LRT and MMC-LRT proposed here by including simulation results of

two other cases of interest in the univariate setting. Specifically, we consider an alternative

of M0 + m = 3 and cases where we compare M0 = 2 vs. M0 + m = 3 regimes. In ad-

dition, multivariate settings (e.g., MS-VAR models) are also considered. Results presented

in Rodriguez Rondon and Dufour (2022a) suggest that the LMC-LRT and the parametric

Bootstrap procedure discussed in Qu and Zhuo (2021) and Kasahara and Shimotsu (2018)

are outperformed by the MMC-LRT proposed here for controlling the size of the test in

finite samples when considering more complicated DGPs (e.g., MSM with two or more

regimes under the null hypothesis). This further highlighting the value of having a proce-

dure such as the MMC-LRT which is identification robust and valid even in finite samples.

5. Conclusion

We have shown how to use the Monte Carlo procedures described in Dufour (2006) for the

setting of a likelihood ratio test for MSMs. In doing so, we propose the Maximized Monte

Carlo Likelihood Ratio Test (MMC-LRT) and the Local Monte Carlo Likelihood Ratio Test

(LMC-LRT) that can be used to determine the number of regimes in MSMs and in HMMs.

Specifically, the tests proposed here are general enough where they can deal with settings

where we are interested in comparing models with M0 regimes under the null hypothesis

against models with M0 + m regimes under the alternative, where here both M0, m ≥ 1.

Further, they can also be applied to settings where we have a non-stationary process, a

process with non-Gaussian errors, and multivariate settings. To the best of our knowledge,

we are the first to consider hypothesis testing of multivariate MSMs. Although we work

we the sample distribution of the test statistic, asymptotic results have not been provided

for LRT in a multivariate setting which brings forward an interesting direction for future

research. The simulation results suggest that both versions of the Monte Carlo likelihood

ratio test are able to control the level of the test very well. An important contribution is

the MMC-LRT, which perform well in that it maintains a rejection frequencies ≤ α in all

cases as suggested by the theory proposed in Dufour (2006) and is an identification-robust

procedure that is valid in finite samples and asymptotically. Further, simulation results

also suggest both test have good power. Specifically, the LMC-LRT has comparable or

better power than the supTS and expTS tests while both the LMC-LRT and MMC-LRT

outperform their moment-based counterparts.
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