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Outline

• Conditional Heteroskedastic Models

▷ ARCH

▷ GARCH

• ADL & Nonstationary Models

▷ ADL Model

▷ Cointegration

• Vector Autoregression (VAR) Models

▷ VAR Models

▷ Prediction

▷ Causality

▷ VECM

• Structural VAR (SVAR) Models

▷ Identification problem

▷ Short-run restrictions

▷ Other identification methods
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Conditional Heteroskedasticity Models

Based on: Hamilton (1994) Ch. 21; Verbeek (2004) Ch. 8; Martin et al.
(2013) Ch. 20

See also: Enders (2015) Ch. 3
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Introduction

So far, we have seen AR(p) models

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt (1)

with the following properties

E [ϵt ] = 0 E [ϵtϵs ] =

{
σ2 when s = t

0 when s ̸= t

and discussed conditions for these processes to be stationary (i.e., all
roots outside the unit circle).

We know that when the process is stable E [yt ] = µ ∀t but that

Et [yt ] = E [yt |It ] = c + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p

Similarly, although the unconditional variance E [ϵ2t ] = σ2, we may be
interested in the conditional variance Et [ϵ

2
t ] = σ2

t .
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Introduction

Why should we care about conditional heteroskedasticity models?:

• Financial time series show evidence of volatility clustering

▷ At high frequencies (e.g., minute-data, daily, weekly)

▷ Big (small) shocks are followed by big (small) shocks in returns

• Relax assumption that variance is constant when modeling yt or y
2
t

▷ Volatility clustering gives rise to autocorrelation in y 2
t

• Conditional normality

▷ Unconditional distribution will be Leptokurtic (fat tails)

▷ Conditional distribution will be normal

• Better forecasts of ϵt and y2
t
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Introduction

Figure: Returns and squared returns of 3 stock indices
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ARCH

We can describe the ϵ2t using the following AR(p) model

ϵ2t = ω + α1ϵ
2
t−1 + · · ·+ αqϵ

2
t−q + νt (2)

where νt is another white noise process such that

E [νt ] = 0 E [νtνs ] =

{
λ2 when s = t

0 when s ̸= t

so that the conditional variance is given by

Et [ϵ
2
t ] = ω + α1ϵ

2
t−1 + · · ·+ αqϵ

2
t−q (3)

A white noise process ϵt that is explained by the model given in (2) is
described as an Autoregressive Conditional Heteroskedasticity (ARCH)
model.

This class of models was first introduced by Engle (1982).
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ARCH

We can also express the ARCH(q) model as

ϵt =
√
ht · νt (4)

where instead

E [νt ] = 0 E [νtνs ] =

{
1 when s = t

0 when s ̸= t

and

ht = ω + α1ϵ
2
t−1 + · · ·+ αqϵ

2
t−q (5)

This specification will allow us to estimate all parameters of the model
for yt and the parameters for ht simultaneously.
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ARCH

It can also be verified that the unconditional moments of ϵt are the same
in both cases, regardless of whether we use (4) or (2)

That is,

E [ϵt ] = 0

E [ϵ2t ] =
ω

(1−
∑∞

j=1 αj)
= σ2

Unlike regular AR(p) models, restrictions on ω and αj are needed.
Specifically, since ϵ2t and E [ϵ2t ] must be positive, these parameters must
all be positive.
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ARCH: Maximum Likelihood Estimation

Suppose we want to estimate the following model by MLE

yt = xxx ′tβ + ϵt (6)

ϵt =
√
ht · νt (7)

where xtxtxt is a vector of predetermined variables which may include lags of
yt and where ϵ2t follows a ARCH(q). Assuming νt ∼ i .i .d .N (0, 1), the
conditional likelihood function is given by

f (yt |xxx t , It−1) =
1√
2πht

exp

(
−1

2

(yt − xxx tβ)
2

ht

)
(8)

where

ht = ω + α1(yt−1 − xxx ′t−1β)
2 + · · ·+ α1(yt−q − xxx ′t−qβ)

2 (9)
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ARCH: Maximum Likelihood Estimation
Let θ = (β′, ω, α1, . . . , αq). The conditional log likelihood to be
maximized is given by

L(θ) = −T

2
log(2π)− 1

2

T∑
t=1

log(ht)−
1

2

T∑
t=1

(yt − xxx ′tβ)
2

ht
(10)

We can also work with non-Gaussian distributions.

For example, if we assume νt ∼ i .i .d .tδ, where δ is the degree of freedom
parameter to be estimated and included in θ, then

L(θ) = T log

{
Γ[(δ + 1)/2]

π1/2Γ(δ/2)
(δ − 2)−1/2

}
− 1

2

T∑
t=1

log(ht)

− (δ + 1)

2

T∑
t=1

[
1 +

(yt − xxx ′tβ)
2

ht(δ − 2)

] (11)

Alternatively, we can also use QMLE. See Hamilton (1994) Ch. 21 for a
discussion of analytical or numerical solutions.
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ARCH: Testing

So far, we are assuming

ϵ ∼ i .i .d .N (0, ω + α1ϵ
2
t−1 + · · ·+ αqϵ

2
t−q)

If αj = 0 ∀j then ϵ ∼ i .i .d .N (0, ω) (i.e., no ARCH and the variance is
constant). Hence, we can test for ARCH through the following hypothesis

H0 : α1 = · · · = αq = 0 vs. Ha : αj ̸= 0 for some j (12)

This can be tested using a LR, Wald, or LM test. LM is commonly used
as it only requires estimating (6) without ARCH.
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ARCH: Testing

Although the conventional LM test statistic can be computed, Engle
(1982) shows that in this case, an equivalent form of the LM statistic is
given by

LM = T · R2 (13)

Here, T is the sample size and R2 is the coefficient of determination
from the following regression

ϵ̂2t = ω + α1ϵ̂
2
t−1 + · · ·+ αq ϵ̂

2
t−q + et (14)

where ϵ̂2t are the estimated residuals when estimating the model under
the null.

Under the null,

LM ∼ χ2
(q)
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ARCH: Forecasting
Consider the following ARCH(1) model

ϵ2t = ω + α1ϵ
2
t−1 (15)

obtaining out-of-sample forecasts for the conditional variance from this
ARCH(1) can be done as in previous chapters by taking the expectation
conditional on information available at time t. That is,

E [ϵ2t+1] = ϵ2t+1|t = ω + α1ϵ
2
t

at t = 2

ϵ2t+2|t = ω + α1ϵ
2
t+1|t

= ω + α1ω + α2
1ϵ

2
t

at t = 3

ϵ2t+3|t = ω + α1ϵ
2
t+2|t

= ω + α1ω + α2
1ω + α3

1ϵ
2
t

or in general

ϵ2t+h|t = ω

h−1∑
j=0

αj
1 + αh

1ϵ
2
t (16)
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GARCH

If the process we want to model has long memory, we need to estimate
an ARCH(q) with many lags q.

To circumvent this, we can use the Generalized ARCH (GARCH) model
introduced by Bollerslev (1986). A GARCH(p,q) model is given by

ϵt =
√
htνt (17)

ht = ω +

q∑
j=1

αjϵ
2
t−j +

p∑
j=1

βjht−j (18)

Here, it is still the case that E [ϵt ] = 0, but now

E [ϵ2t ] =
ω(

1−
∑q

j=1 αj −
∑p

j=1 βj

)
and so, as before, restrictions are still needed on αj and βj for this value
to always be positive.
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GARCH

In many cases, a GARCH(1,1) is appropriate. This is because, starting
with a GARCH(1, 1) model

ht = ω + α1ϵ
2
t−1 + β1ht−1

β(L)ht = ω + α1ϵ
2
t−1

ht = β(L)−1ω + β(L)−1α1ϵ
2
t−1

ht =
ω

1− β1
+ α1

∞∑
i=0

βi
1ϵ

2
t−1−i

we can obtain an ARCH(∞).

Note that the last line follows because, as seen before in Ch.8 of Verbeek
(2004), the inverse of a finite order lag polynomial is an infinite order lag
polynomial.
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GARCH
Example from Verbeek (2004): US and Deutsche Mark Exchange rate
from January 1980 to 21 May 1987
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GARCH: Testing

Given that it is more parsimonious, GARCH models are typically
preferred. However, we can test for GARCH effects.

The same LM test as before for ARCH(q) is sometimes used with a large
q as evidence for a GARCH(1,1) or GARCH(2,2).

Alternatively, note that if we have a GARCH(0,q) it is equivalent to an
ARCH(q) model. Hence we can test for GARCH effects by testing the
following hypothesis.

H0 : β1 = · · · = βp = 0 vs. Ha : βj ̸= 0 for some j (19)

This can be tested using a LR or Wald test.
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GARCH
There are many other extensions of the basic ARCH model of Engle
(1982). Some important extensions include:

• Exponential GARCH (EGARCH) of Nelson (1991) is used to
consider asymmetric distributions

log(ht) = ω + α (νt−1 − E [νt−1]) + γνt−1 + βlog(ht−1) (20)

• Integrated GARCH (IGARCH) of Engle and Bollerslev (1986) is used
for processes with unit-roots α+ β = 1 (so that β = 1− α)

ht = ω + αϵ2t−1 + (1− α)ht−1 (21)

• Markov switching GARCH (MS-GARCH) to consider time-varying
parameters (see Hamilton and Susmel (1994) and Gray (1996)
among others)

ht = ωst + αst ϵ
2
t−1 + βstht−1 (22)

See Bollerslev (2009) for a more complete list of the wide family of
GARCH models.
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Prediction

In practice, we will likely need compare the prediction of various models
and try to determine which model provides better predictions.

Ways to compare forecasts, at different horizons h, include

• Comparing MSE

• Diebold Mariano (DM) Test (see Diebold and Mariano (2002))

▷ Test for statistical difference in MSE

▷ Easily applied to other loss functions other than MSE

• Model Confidence Set (MCS) Test (see Hansen et al. (2011))

▷ Extension of DM test used to determine a set of optimal models
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GARCH: Estimation & Forecasting using R

Figure: R output - MSFE of competing GARCH models

See files available on MyCourses.
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Autoregressive Distributed Lag Models &
Models with Nonstationary Variables

Based on: Verbeek (2004) Ch. 9; Enders (2015)
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ADL Models

Consider the following model:

Yt = δ + θYt−1 + ϕ0Xt + ϕ1Xt−1 + ϵt (23)

where both Yt and Xt are stationary variables. Here, we can see that the
effect of Xt are distributed across several periods.

These models are useful for

• Describing dynamic effects of a change in Xt on current and future
values of Yt

• Determining the contemporaneous impact of one variable Xt (e.g.,
policy variable) on another variable of interest Yt

• Determining long-run impact/equilibrium relationship between these
variables
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ADL Models

From eq. (23), assuming |θ| < 1, we can get

• Impact multiplier

∂Yt

∂Xt
= ϕ0

• Long-run multiplier

∂Yt+∞

∂Xt
=
ϕ0 + ϕ1
1− θ

• Long-run equilibrium relation between Y and X

E [Yt ] = δ + θE [Yt ] + ϕ0E [Xt ] + ϕ1E [Xt ]

=
δ

1− θ
+
ϕ0 + ϕ1
1− θ

E [Xt ]

where stationary of Yt and Xt is also used in the last point (i.e.,
E [Yt ] = E [Yt−1] and E [Xt ] = E [Xt−1]).
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ADL Models

We can also get an equivalent representation of the model given by (23)
by subtracting Yt−1 from both sides

Yt − Yt−1 = δ + θYt−1 + ϕ0Xt + ϕ1Xt−1 + ϵt − Yt−1

∆Yt = ϕ0∆Xt − (1− θ)[Yt−1 −
δ

(1− θ)
− (ϕ0 + ϕ1)

(1− θ)
Xt−1] + ϵt

or simply

∆Yt = ϕ0∆Xt − (1− θ)[Yt−1 − α− βXt−1] + ϵt (24)

where α = δ
(1−θ) and β = (ϕ0+ϕ1)

(1−θ) .

This is an example of an error-correction model.
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ADL Models

∆Yt = ϕ0∆Xt − (1− θ)[Yt−1 − α− βXt−1] + ϵt

Here, the term [Yt−1 − α− βXt−1] measures deviations from the
long-run equilibrium (i.e., equilibrium error).

• If the equilibrium error term is positive, then −(1− θ) adjusts ∆Yt

downwards

• If the equilibrium error term is negative, then −(1− θ) adjusts ∆Yt

upwards

The stability condition |θ| < 1 ensures that (1− θ > 0). And so changes
in Yt are explained by current changes in Xt plus this error-correction
term.
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ADL Models
We can easily generalize the ADL model given in eq. (23) to include
more lags

θ(L)Yt = δ + ϕ(L)Xt + ϵt (25)

where

θ(L) = 1− θ1L− · · · − θpL
p

ϕ(L) = ϕ0 + ϕ1L+ · · ·+ ϕqL
q

are lag polynomials but the constant term in ϕ(L) is not restricted to 1.
Assuming we have a stationary process, θ(L) is invertible and so we can
get

Yt = θ−1(L)δ + θ−1(L)ϕ(L)Xt + θ−1(L)ϵt

Now the coefficients of the lag polynomial θ−1(L)ϕ(L) determine the
dynamic affects of Xt on Yt and the long-run effect is now given by

θ−1(L)ϕ(L) =
ϕ0 + ϕ1 + · · ·+ ϕq
1− θ1 − · · · − θp
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Spurious Regression

Suppose now that Yt and Xt are non-stationary variables, generate by
independent random walks, and we attempt to estimate the following
regression

Yt = α+ βXt + ϵt

even though there should be no relationship between these two variables,
the estimated model is likely to have:

• High R2

• Significant value for β

• highly autocorrelated residuals

• Low DW statistic

• Very high variance for ϵt

This spurious relationship occurs because both variables are trended. The
other features occur because, since both Yt and Xt are I (1), the error
term ϵt is also I (1). These results should not be taken seriously.
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Spurious regression in R

Figure: Times series of two independent random walk processes

29/85



Spurious regression in R
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Spurious regression in R

Figure: Times series Zt from spurious regression
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Cointegration

In the previous slide, we saw a case where Yt and Xt were non-stationary
and independent. Suppose instead that they share a common stochastic
trend.

That is,

1. Yt & Xt are I (1)

2. ∃ β such that Yt − βXt is I (0)

In this case,

• we say Yt and Xt are cointegrated and share a common trend

• (1,−β) is called the cointegrating vector

• OLS estimate of β is said to be super consistent and hence, can be
estimated by OLS.

Since Zt = Yt − βXt is I (0) it must be that the long-run components of
Yt and βXt cancel out over time (i.e., revert back to a mean of 0). This
is related to the concept of a long-run equilibrium discussed previously.
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Spurious regression in R

From Kilian and Lütkepohl (2017), Ch. 3 33/85



Cointegration: Testing
So when Yt and Xt are non-stationary and we estimate the regression

Yt = α+ βXt + ϵt

Two outcomes are possible:
1. ϵt is I (1)

▷ spurious regression

2. ϵt is I (0)
▷ Yt and Xt are cointegrated and share a common trend

Naturally, testing ϵt for a unit-root can help us determine which case we
are dealing with. For this we can use

• Dickey-Fuller (DF) test for regression: ∆ϵ̂t = γ0 + γ1ϵ̂t−1 + ut

• augmented DF (ADF) test by adding more lags of ∆ϵ̂t to the above
regression

• Cointegrating Regression Durbin-Watson (CRDW) test for dw
statistic being close to 0

However, these test procedures have some limitations. See Verbeek
(2004) for further discussion of these issues.
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Cointegration: Error-correction Mechanism
Granger representation theorem, discussed in Granger (1983) and Engle
and Granger (1987), states that if a set of variables are cointegrated, then
a valid error-correction representation exists. The general form is given by

θ(L)∆Yt = δ + ϕ(L)∆Xt−1 − γZt−1 + α(L)ϵt (26)

where

• Zt = Yt − βXt

• (1,−β) is the cointegrating vector

• θ(L), ϕ(L), and α(L) are lag polynomials

If β is known, we can compute Zt directly and estimate this model.
Otherwise, we use a two-step procedure where first we estimate β̂ from
the cointegrating regression

Yt = βXt + ϵt (27)

and then compute Ẑt = Yt − β̂Xt , which can be used in the error-
correction representation regression
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Cointegration regression in R

Figure: Times series of two cointegrated I (1) processes
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Cointegration regression in R
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Cointegration regression in R

Figure: Times series Zt from Cointegrated regression
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Vector Autoregressive Models

Based on: Hamilton (1994) Ch. 10 & 11; Lütkepohl (2005) Ch. 2 - 4 &
6 - 8; Kilian and Lütkepohl (2017) Ch. 2 & 3; Candian (2021b)

See also: Verbeek (2004) Ch. 9; Enders (2015) Ch. 5 & 6; Martin et al.
(2013) Ch. 13; Hayashi (2000) Ch. 6
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Introduction

• Vector Autoregression (VARs) models were first introduced within
the economics literature in Sims (1980) as a method for estimating
large-scale macro models

• VAR models can be useful for:

▷ Summarizing joint dynamics of economic time series data

▷ Forecasting

▷ Estimating causal relationships

▷ Variance decomposition

▷ Obtain Impulse Response Functions & Policy analysis

▷ Test economic theories

• Two types of VAR models

▷ Reduced-form VAR models

▷ Structural VAR (SVAR) models (next section)
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VAR(1) Example

We can model the joint dynamics of Federal Funds Rate (FFR) and GDP
growth (∆GDP) using the following VAR model:

FFRt = ϕ11FFRt−1 + ϕ12∆GDPt−1 + ϵf ,t

∆GDPt = ϕ21FFRt−1 + ϕ22∆GDPt−1 + ϵg ,t
(28)

Here, the number of variables is N = 2, and the lag-order is p = 1.

When N and p are larger it is more convenient to work with matrix
notation:

yt = Φyt−1 + ϵt (29)

where

yt =

[
FFRt

∆GDPt

]
Φ =

[
ϕ11 ϕ12
ϕ21 ϕ22

]
ϵt =

[
ϵf ,t
ϵg ,t

]
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VAR(p)

In general

yt =


y1,t
y2,t
...

yN,t


and a VAR(p) model would be given by

yt = Φ1yt−1 +Φ2yt−2 + · · ·+Φpyt−p + ϵt (30)

Note that here, the process yt has been demeaned for ease of notation.
That is, yt = Yt −µµµ, where µµµ is an (N × 1) vector containing the mean
of each variable in yt .
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Error Term

If we assume i.i.d. normal errors, then we can denote their joint
distribution as

ϵt ∼ N (000,Σϵ) where Σϵ
(N×N)

=


σ2
1,1 σ1,2 . . . σ1,N
σ2,1 σ2

2,2 . . . σ2,N
...

...
. . .

...
σN,1 σN,2 . . . σ2

N,N



In the Federal Funds Rate and GDP growth example above where N = 2,
the covariance matrix Σϵ would be a simple (2× 2) matrix given below

Σϵ =

[
σ2
f σf ,g

σg ,f σ2
g

]
Here σf ,g = σg ,f is the covariance of FFRt and ∆GDPt
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Companion Form

As can be seen from eq. (30), the VAR(p) model is simply a multivariate
extension of the AR(p) model. Like AR(p) models, we can also use the
companion form to obtain a VAR(1) representation:

xt = Fxt−1 + ηt (31)

where

xt
(Np×1)

=


yt
yt−1

...
yt−p+1

 F
(Np×Np)

=


Φ1 Φ2 . . . Φp−1 Φp

I 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

 ηt
(Np×1)

=


ϵt
0
...
0


where I is N × N identity matrix.

It is often easier to work with the VAR(1) representation of the VAR(p)
model obtained using the companion form. We can always recover yt
using yt = Mnxt where Mn is an N × Np matrix defined as Mn = [I , 0]
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Theoretical properties: Stationarity

The process yt is second-order stationary iff the following conditions hold:

1. E[y2
t ] <∞ ∀t ∈ T

2. E[ys ] = E[yt ] ∀s, t ∈ T

3. Cov(yt ,yt−h) = Γyy ,h ∀t & ∀h

If the process is second-order stationary we can also say it is covariance
stationary or weakly stationary.

As in the univariate case, to determine if the process is stationary we can
verify that the eigenvalues of F are inside the unit circle (i.e., less than 1
in absolute value or modulus) or equivalently if the roots of the
characteristic equation are outside the unit circle

det
[
I − Φ1z − Φ2z

2 − · · · − Φpz
p
]
= 0 (32)

For a proof of this see section 10.A of Hamilton (1994).
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Theoretical properties: The mean

Suppose instead that we are working with the VAR(1) representation of a
VAR(p) model that includes the constant term

xt = ν + Fxt−1 + ηt (33)

where ν = [c , 0, . . . , 0]′ and c is the vector of constant term from the
original VAR(p) model.

If the process is stationary, then we know E[yt ] = µ ∀t and that
µ = Mnµx where µx = E [xt ]. Using this, we can determine the mean as
follows:

E [xt ] = ν + FE [xt−1] + E [ηt ]

µx = ν + Fµx

(I − F )µx = ν

µx = (I − F )−1ν

and so µ = Mn(I − F )−1ν
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Theoretical properties: Autocovariances

Returning to the demeaned process for convenience and assuming
stationarity holds, we can compute the autocovariance matrix of order
zero as follows:

Γxx,0 = E [xtx
′
t ]

= FΓxx,0F
′ + E [ηtη

′
t ]

Using the vec(·) operator and vec(ABC ) = (C ′ ⊗ A)vec(B) we can see
that

vec(Γxx,0) = vec(FΓxx,0F
′) + vec(E [ηtη

′
t ])

= (F ⊗ F )vec(Γxx,0) + vec(E [ηtη
′
t ])

= [I − (F ⊗ F )]−1vec(E [ηtη
′
t ])

by undoing the vec(·) (i.e., using vec−1(·) with correct dimensions) we
can obtain Γxx,0.
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Theoretical properties: Autocovariances

Since yt = Mnxt and Γxx,0 = E [xtx
′
t ], we can obtain Γyy ,0 as follows:

Γyy ,0 = E [yty
′
t ]

= E [Mnxtx
′
tM

′
n]

= MnΓxx,0M
′
n

Also, since

E [xtx
′
t−h] = FE [xt−1x

′
t−h] + E [ηtx

′
t−h]

we can see that (try to show this)

Γxx,h = F hΓxx,0 (34)

and as before, Γy ,h = MnΓxx,hM
′
n. Note also that Γyy ,h = Γyy ,−h.
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Theoretical properties: Autocorrelations

Autocorrelation are useful because they are scale invariant.

The autocorrelation matrix for yt is given by

Ryy ,h = D−1Γyy ,hD
−1 (35)

where

D−1 =


1√
γ11,0

. . . 0

...
. . .

...
0 . . . 1√

γNN,0


the autocorrelation of yi,t and yj,t−h is given by

ρij,h =
γij,h√

γii,0
√
γjj,0

(36)

which is simply the ij-element of the Ryy ,h matrix.
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Theoretical properties: VMA(∞) representation

When stationary, we can represent a VAR(p) as a VMA(∞) as follows:

yt = Φ1yt−1 + · · ·+Φpyt−p + ϵt

(I − Φ1L− · · · − ΦpL
p) yt = ϵt

Φ(L)yt = ϵt

where Φ(L) is a finite order lag polynomial. As seen in Ch.8 of Verbeek
(2004), the inverse of a finite order lag polynomial is an infinite order lag
polynomial. Let Ψ(L) = Φ(L)−1. Then

Ψ(L)Φ(L)yt = Ψ(L)ϵt

yt = Ψ(L)ϵt

yt =
∞∑
j=0

Ψjϵt−j

where
∑∞

j=0 |Ψj | <∞ and we define Ψ0 = I . The result is also
considered a causal VMA(∞) process.
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Theoretical properties: VMA(∞) representation

We can also obtain the Covariance matrix using the VMA(∞)
representation as

Γyy ,0 = E [yty
′
t ]

= E

 ∞∑
j=0

Ψjϵt−j

 ∞∑
j=0

Ψjϵt−j

′
=

∞∑
j=0

ΨjΣϵ(Ψj)
′

Note that if the model include a constant term c then Ψ(L)c = µ and
the last expression above becomes

yt = µ+
∞∑
j=0

Ψjϵt−j (37)
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Estimation: OLS
Consider again the VAR(p) model given by eq. (30). And define the
(Np × 1) matrix xt = [y ′

t−1, y
′
t−2, . . . , y

′
t−p]

′. Now let,

Y =

y ′
1
...
y ′
T

 X =

x ′1
...
x ′T

 Φ
(Np×N)

=
[
Φ1, . . . ,Φp

]′
ϵ =

ϵ
′
1
...
ϵ′T


Using this notation, we can now write the VAR(p) model as

Y = XΦ+ ϵ (38)

From here, the consistent OLS estimator of Φ is given by

Φ̂ = (X ′X )−1X ′Y (39)

and the sum of squared OLS residual matrix is given by

Ŝ = (Y − X Φ̂)′(Y − X Φ̂) (40)

and a consistent estimator of Σϵ is then given by

Σ̂ϵ =
1

T
Ŝ (41)

See section 3.2.2 of Lütkepohl (2005) for asymptotic properties of the LS
estimator.
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Estimation: MLE

Since we assumed normality of the errors, we use the density of the
multivariate normal distribution to estimate the model by Maximum
Likelihood (ML) and so

f (yt |xt ; Φ,Σϵ) = (2π)
−n
2 |Σϵ|

−1
2 exp

{
−1

2
(yt − Φ′xt)

′
Σ−1

ϵ (yt − Φ′xt)

}
by taking logs, we get

logf (yt |xt ; Φ,Σϵ) = −n

2
log(2π)− 1

2
log (|Σϵ|)−

1

2
(yt − Φ′xt)

′
Σ−1

ϵ (yt − Φ′xt)

this is the conditional log-likelihood function for observation yt . It is
conditional because are conditioning on all observations up to time t.
When initializing the estimation in practice, we typically condition on the
first p observations.
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Estimation: MLE

For a sample {y1, . . . , yT} the conditional log-likelihood function is

L(θ) =
T∑
t=1

logf (yt |xt ; Φ,Σϵ)

= −Tn

2
log(2π)− T

2
log (|Σϵ|)−

1

2

T∑
t=1

(yt − Φ′xt)
′
Σ−1

ϵ (yt − Φ′xt)

where θ = {Φ,Σϵ}

In this case, the MLE of Φ and Σϵ and OLS estimators are equivalent
(try to show this).
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Lag-Order Selection

In the previous slides, we assumed the lag-order of the VAR model is
known. I practice, we must choose p based on the available sample of
data.

There are three main procedures for doing so:

• Top-down sequential testing

• Bottom-up sequential testing

• Information Criterion
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Lag-Order Selection

• Top-down sequential testing

1. Choose a maximum lag-order pmax

2. Test hypothesis H0 : Φpmax = 0 vs. Ha : Φpmax ̸= 0

▷ For example, this can be done using ML based tests such as Wald
test or Likelihood ratio test

3. If we fail to reject the null hypothesis then move on to testing
H0 : Φpmax−1 = 0 vs. Ha : Φpmax−1 ̸= 0

4. Continue sequential testing (removing one lag) until null hypothesis
is rejected

5. set the lag-order equal to the last alternative hypothesis from test
where rejection occured

• Bottom-up sequential testing

• Information Criterion
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Lag-Order Selection

• Top-down sequential testing

• Bottom-up sequential testing

1. Choose a minimum lag-order pmin

2. Estimate a VAR(pmin) model and perform residual autocorrelation
test to see if model adequately captures dynamics in the data

▷ Portmanteau Test for residual autocorrelation

▷ LM Test for residual autocorrelation

3. Continue to add more lags until residual autocorrelation test suggest
model is adequate.

• Information Criterion
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Lag-Order Selection
• Top-down sequential testing

• Bottom-up sequential testing

• Information Criterion

▷ General form for information criterion:
C(p) = log

(
det

(
Σ̂ϵ(p)

))
+ cTψ(p)

▶ Σ̂ϵ(p): estimate of the covar matrix when the lag-order is p

▶ ψ(p): function of order p which penalizes large lag orders

▶ cT : sequence of weights that may depend on sample size

▷ Examples include”

▶ Akaike Information Criterion (AIC):

AIC(p) = log
(
det

(
Σ̂ϵ(p)

))
+ 2

T
(pN2)

▶ Schwarz (Bayesian) Information Criterion (SIC) or (BIC):

BIC(p) = log
(
det

(
Σ̂ϵ(p)

))
+ log(T )

T
(pN2)

▷ pN2 is number of parameters. pN2 + N if constant term is included

▷ Choose p that minimizes IC

▷ Minimizing IC provides a balance between model fit and parsimony
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VAR - Cointegration

In a VAR(p) model, the cointegrating vectors become cointegrating
spaces of which the dimension is not known a priori.

The Granger representation theorem previously discussed extends to the
vector setting. Starting with the VAR(p) model,

Yt = δ +Φ1Yt−1 + · · ·+ΦpYt−p + ϵt (42)

The theorem states that there exists a valid error-correction
representation. It is given by

∆Yt = δ + Γ1∆Yt−1 ++ · · ·+ Γp−1∆Yt−p+1 +ΠYt−1 + ϵt (43)

Here, the matrix Π = −Φ(L) is the long-run matrix, which determines
the dynamic properties of Yt
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VAR - Cointegration

Here, Yt ∼ I (1) and so ∆Yt ∼ I (0). By assumption we also have
ϵt ∼ I (0) and so it must be the case that ΠYt−1 ∼ I (0). This presents
the following three settings

1. Π = 0

▷ In this case, (43) is a stationary VAR(p − 1) model for ∆Yt

2. Yt ∼ I (0)

▷ In this case, Π = −Φ(L) is full-rank and invertible and so we can
write Yt = Φ(L)−1(δ + ϵt)

3. If rank(Π) = r , 0 < r < N

▷ In this case, Π is rank deficient and there are linear combinations of
ΠYt that are stationary

This last case is the one of interest. In this case, there can be n − r
common trends shared among the variables.
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VECM
In this case, we can write

Π = γ
(N×r)

β′

(r×N)

(44)

where both, have rank(γ) = rank(β′) = r . When using this in the (43),
we get the vector error-correction model (VECM)

∆Yt = δ + Γ1∆Yt−1 ++ · · ·+ Γp−1∆Yt−p+1 + γβ′Yt−1 + ϵt (45)

where β′Yt−1 gives the r cointegrating relationships and γ contains
weights of these relationships and determine how elements of ∆Yt−1

adjust to the r equilibrium errors. Hence,

Zt−1 = β′Yt−1 (46)

Note that γβ′ = γP−1Pβ′ for any invertible (r × r) matrix P. For this
reason we only determine the space spanned by the columns of β′.
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VECM - Testing

We can test for cointegration as follows:

• Engle-Granger Approach: regression of Y1,t on Y2,t , . . . ,YN,t and
test for unit root in residuals. If null hypothesis of unit root is
rejected, then we proceed to use Ẑt−1 in the VECM model

▷ Results are sensitive to LHS variable (e.g., suppose cointegration
vector does not include Y1,t but includes all other variables)

▷ This test may have low power since it does not use all available
information (other lags and interactions)

▷ When more than one cointegration vector exists, OLS estimates a
linear combination. Null hypothesis is no cointegration so this is not
problematic.

• Johansen Type Test: Sequential procedure that avoids issues
discussed above (see Johansen (1988); Johansen and Juselius
(1990); Johansen (1991)).
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VECM - Testing
We can test for cointegration as follows:

• Engle-Granger Approach: regression of Y1,t on Y2,t , . . . ,YN,t and
test for unit root in residuals. If null hypothesis of unit root is
rejected, then we proceed to use Ẑt−1 in the VECM model

• Johansen Type Test: Sequential procedure that avoids issues
discussed above (see Johansen (1988); Johansen and Juselius
(1990); Johansen (1991)).
▷ Trace test: test H0 : rank(Π) = r0 vs. H1 : rank(Π) > r0 using

λtrace(r0) = −T
N∑

j=r0+1

log(1− λ̂j)

▷ Eigenvalue test: test H0 : rank(Π) = r0 vs. H1 : rank(Π) = r0 + 1
using

λmax(r0) = −T log(1− λ̂r0+1)

where λ̂j are estimated eigenvalues of Π in decreasing order.

Limiting distribution of last two test statistics under null are approximated
by a multivariate extensions of the Dickey–Fuller distributions.
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What next?

From Lütkepohl (2005)
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Prediction

Assuming we have an adequate N-dimensional stationary VAR model, we
can use it to form some forecasts.

A good predictor will:

• Minimize a chosen Loss function

▷ In practice we work with the expected loss

▷ Typically the forecast Mean Square Error (MSE)

• Based on information available at time t (i.e., It)

The linear minimum MSE predictor for horizon h at origin t is given by

Et [yt+h] ≡ E [yt+h|It ] (47)

where It = {yt , yt−1, . . . } is the information set containing all
information up to time t. In this case, this linear MSE predictor is also an
optimal predictor.
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Prediction
Example: using VAR(1)

when h = 1

Et [yt+1] = Et [Φyt ] + Et [ϵt+1]

= Φyt

when h = 2

Et [yt+2] = ΦEt [yt+1] + Et [ϵt+2]

= Φ2yt

when h = 3

Et [yt+3] = Et [Φyt+2] + Et [ϵt+3]

= Φ3yt

In general

Et [yt+h] = Φhyt (48)
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Prediction
Let ŷt+h|t = Et [yt+h]. Then,

yt+h − ŷt+h|t = Φyt+h−1 + ϵt+h − Φhyt

= Φ2yt+h−2 +Φϵt+h−1 + ϵt+h − Φhyt

...

= Φhyt +
h−1∑
j=0

Φjϵt+h−j − Φhyt

=
h−1∑
j=0

Φjϵt+h−j

And so, the forecast error at horizon h is

Σy (h) = E [(yt+h − ŷt+h|t)(yt+h − ŷt+h|t)
′]

= E

h−1∑
j=0

Φjϵt+h−j

h−1∑
j=0

Φjϵt+h−j

′
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Prediction
And so

Σy (h) =
h−1∑
j=0

ΦjΣϵ(Φ
j)′ (49)

=
h−1∑
j=0

ΨjΣϵ(Ψj)
′ (50)

where the last line follows because, in the case of a VAR(1) model,
Φj = Ψj , the VMA coefficients obtained when inverting the lag
polynomial Φ(L) and so Φ0 = Φ0 = I .

From here, we can see that when h → ∞ we get

Σy (h) =
∞∑
j=0

ΨjΣϵ(Ψ
j)′

= Γyy ,0

That is, Σy (h) −→
h→∞

Γyy ,0
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Prediction

In general, if we have a VAR(p) model, we can work with its VAR(1)
representation. In this case

yt+h − ŷt+h|t = Mn(xt+h − x̂t+h|t)

= Mn

h−1∑
j=0

F jηt+h−j


=

h−1∑
j=0

MnF
jM ′

nMnηt+h−j

=
h−1∑
j=0

Ψjϵt+h−j

where x̂t+h|t = F hxt was used.
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Causality

Granger (1969) introduced a definition of causality that later became
known as Granger causality.

Consider the following bi-variate VAR(1) model[
y1,t
y2,t

]
=

[
ϕ11 ϕ12
ϕ21 ϕ22

] [
y1,t−1

y2,t−1

]
+

[
ϵ1,t
ϵ2,t

]
(51)

Let y1,t+h|t denote the h-step ahead forecast of y1,t at origin t, based on
information set It and the corresponding MSE for y1 as σ2

y1(h|It).

We say y2,t Granger causes y1,t if

σ2
y1(h|It) < σ2

y1(h|It\{y2,s |s ≤ t})

where It\{y2,s |s ≤ t} represents the information set It except for the
past and present information about y2,t process.

That is, if including past and present information about y2,t improves the
forecast (reduces MSE) of y1,t , then we say y2,t ranger causes y1,t
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Causality

In the bi-variate case, where It is limited to past and present
observations of y1,t and y2,t , it is straightforward to implement this
concept using the VAR(p) model.

Using the model above, we can say y2,t does not Granger cause y1,t if
and only if ϕ12 = 0. The same can be said in a VAR(p) model if and only
if ϕ12,j = 0 for j = 1, 2, . . . , p.

These restrictions can easily be tested using a Wald or Likelihood Ratio
test so long as the VAR(p) model is stationary.

71/85



Causality

For example, going back to the Federal Funds Rate and GDP growth
model

[
FFRt

∆GDPt

]
=

[
ϕ11 ϕ12
ϕ21 ϕ22

] [
FFRt−1

∆GDPt−1

]
+

[
ϵf ,t
ϵg ,t

]
(52)

we can test

H0 : ϕ21 = 0 vs. Ha : ϕ21 ̸= 0

If we fail to reject the null hypothesis, then we would say that our model
suggests there is no evidence that Federal Funds Rate Granger causes
GDP growth.
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Causality

When we have a larger model (i.e., N > 2) it is no longer as
straightforward to asses the Granger causality between two variables.

• Granger causal ordering may change when information set changes

• If y2,t Granger causes y1,t , including other variables, say y3,t , can
break this causality if y3,t is correlated with both y1,t and y2,t

• Similarly, y2,t may not Granger causes y1,t is a bi-variate model but
does when including y3,t .

For further discussion and extensions of Granger causality in higher
dimensional VAR models see Lütkepohl (1993), Dufour and Renault
(1998), Dufour et al. (2006), and Dufour and Taamouti (2010).
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Impulse Response Functions (IRFs)

Continuing with the Federal Funds Rate and GDP growth model

[
FFRt

∆GDPt

]
=

[
ϕ11 ϕ12
ϕ21 ϕ22

] [
FFRt−1

∆GDPt−1

]
+

[
ϵf ,t
ϵg ,t

]
(53)

Consider the following scenario

• FFRt−1 = 0 and ∆GDPt−1 = 0

• At time t either ϵf ,t = 1 or ϵg ,t = 1

• Shocks are temporary so that after time t, ϵf ,s = ϵg ,s = 0 ∀s > t

IRFs will tell us how FFRt+h and ∆GDPt+h respond to that shock. In
this case, we can define 4 IRFs. Namely,

∂FFRt+h

∂ϵf ,t

∂FFRt+h

∂ϵg ,t

∂∆GDPt+h

∂ϵf ,t

∂∆GDPt+h

∂ϵg ,t
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Impulse Response Functions (IRFs)
In general, using the VMA(∞) re presentation we derived earlier,

yt =
∞∑
j=0

Ψjϵt−j

moving forward h steps

yt+h =
∞∑
j=0

Ψjϵt+h−j

we can see that

∂yt+h

∂ϵt
= Ψh

Let e1 = [1, 0, . . . , 0]′, the IRFs from a unit shock in ϵ1,t is then

∂yt+h

∂ϵ1,t
= Ψhe1
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Impulse Response Functions (IRFs)
If we want to get the IRF of, say, the second variable, then we can define
e2 = [0, 1, 0, . . . , 0]′ and we can obtain is as follows

∂y2,t+h

∂ϵ1,t
= e′2Ψhe1

Hence, the IRF of y2,t+h from a shock in ϵ1,t is the (2, 1)-element of Ψh

and more generally, the the (i , j)-element of Ψh gives

∂yi,t+h

∂ϵj,t
= ψ

(h)
i,j where Ψh =


ψ
(h)
1,1 . . . ψ

(h)
1,N

...
. . .

...

ψ
(h)
N,1 . . . ψ

(h)
N,N


Note that, for example in a bivariate VAR(1) model, if yj,t does not

Granger cause yj,t , then ϕi,j = 0 and so ψ
(h)
i,j = 0 and so the IRFs of i

from shocks to j will be 0 ∀h ≥ 0.
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Impulse Response Functions (IRFs)

There is another method to get IRFs from a simple linear regression
developed by Jordà (2005) called Local Projections. Consider the
following regression

yt+h = Bhyt + νt+h

It can be shown that Bh = Ψh (Recall forecasting equation).

This method has gained popularity as it is believed to be robust to
misspecification. There can be issues when process is highly persistent
but this can be addressed with a lag-augmented model as discussed in
Montiel Olea and Plagborg-Møller (2021).
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Structural Vector Autoregressive Models

Based on: Lütkepohl (2005) Ch. 9 & 10; Kilian and Lütkepohl (2017)
Ch. 4; Candian (2021a)

See also: Enders (2015) Ch. 5; Martin et al. (2013) Ch. 13; Hayashi
(2000) Ch. 6
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SVAR Model: Structural Shocks

So far we have been working with reduced-form VAR models

yt = Φ1yt−1 + · · ·+Φpyt−p + ϵt

where ϵt ∼ N (0,Σ) and where ϵt has the interpretation of one-step
ahead forecast errors and we allowed these errors to be correlated.

Correlated shocks make the IRFs difficult to interpret since a change in
ϵi,t means ϵj,t also changes.

We can work with structural shocks (orthogonal) shocks instead. Let

ϵt = A−1ut (54)

So that the one-step-ahead forecast errors, ϵt , are linear combinations of
the structural shocks ut where E [utu

′
t ] = I so that structural shocks are

orthogonal.
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SVAR Model: Contemporaneous Matrix

Using (54), we can express the VAR in structural form

yt = Φ1yt−1 + · · ·+Φpyt−p + A−1ut

Ayt = AΦ1yt−1 + · · ·+ AΦpyt−p + ut

which gives the Structural VAR

Ayt = B1yt−1 + · · ·+ Bpyt−p + ut (55)

Here, the matrix A is the matrix of contemporaneous effects.
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SVAR Models: IRFs

Using (54), we can also obtain the VMA(∞) in terms of the structural
shocks

yt =
∞∑
j=0

ΨjA
−1ut−j (56)

and so the IRFs are now

∂yt+j

∂ut
= ΨjA

−1 (57)
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SVAR Models: Identification Problem
How do we identify A or A−1?

Since ϵt = A−1ut

E [ϵtϵ
′
t ] = E [A−1utu

′
t(A

−1)′]

= A−1E [utu
′
t ](A

−1)′

= A−1(A−1)′

= Σϵ

Consider for example a bivariate case and let A−1 =

[
α11 α12

α21 α22

]
. Then,

σ2
1 = α2

11 + α2
12

σ2
2 = α2

21 + α2
22

σ12 = σ21 = α11α21 + α12α22

Since we know how to estimate Σϵ, we might be tempted to solve for
A−1. However, we have 3 equations and 4 unknowns.

In general, A−1 has N2 elements while Σϵ only has (N+1)N
2 elements.
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SVAR Models: Short-Run Restrictions

We know we must satisfy

Σϵ = E [A−1utu
′
t(A

−1)′]

one option for A−1 is the “square-root” (Cholesky decomposition) of Σϵ.

Σϵ = Σltr (Σltr )
′

Σltr is a lower triangular matrix and hence only has (N+1)N
2 elements. If

Σϵ is non-singular, this matrix is unique.

What does this mean for the dynamics of our model?
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SVAR Models: Short-Run Restrictions
Working again with our example from Sims (1980)

[
FFRt

∆GDPt

]
=

[
ϕ11 ϕ12
ϕ21 ϕ22

] [
FFRt−1

∆GDPt−1

]
+

[
ϵf ,t
ϵg ,t

]
(58)

Here, the shocks are monetary policy shocks (ϵf ,t) and technology shocks
(ϵg ,t). We set α12 = 0 so that A−1 = chol(Σϵ). Then

ϵt =

[
α11 0
α21 α22

] [
uf ,t
ug ,t

]
which lead to

FFRt = ϕ11FFRt−1 + ϕ12∆GDPt−1 + α11uf ,t

∆GDPt = ϕ21FFRt−1 + ϕ22∆GDPt−1 + α21uf ,t + α22ug ,t
(59)

The assumption we have built into this model is: central bank does not
react contemporaneously to technology shocks. This can be because data
on aggregate output only become available with a one-quarter lag.
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SVAR: Other Identification Methods

Depending on your application, short-run restrictions may not always be
appropriate. Other important identifications methods include:

• Long-run restrictions (see Blanchard and Quah (1989))

• Sign restrictions (see Uhlig (2005))

• Heteroskedasticity (see Rigobon (2003))

▷ ARCH/GARCH (see Normandin and Phaneuf (2004); Bouakez and
Normandin (2010))

▷ Markov-switching (see Lanne et al. (2010))

• Non-Gaussian errors (see Gouriéroux and Zaköıan (2015); Lanne
et al. (2017)
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